47 resultados para Ship roll damping
Resumo:
Prediction of lag damping is difficult owing to the delicate balance of drag, induced drag and Coriolis forces in the in‐plane direction. Moreover, induced drag” is sensitive to dynamic wake, bath shed and trailing components, and thus its prediction requires adequate unsteady‐wake representation. Accordingly, rigid‐blade flap‐lag equations are coupled with a three‐dimensional finite‐state wake model; three isolatcd rotor canfigurations with three, four and five blades are treated over a range of thrust levels, tack numbers, lag frequencies and advance ratios. The investigation includes convergence characteristics of damping with respect to the number of radial shape functions and harmonics of the wake model for multiblade modes of low frequency (< 1/ rev.) to high frequency (> 1/rev.). Predicted flap and lag damping levels are then compared with similar predictions with 1) rigid wake (no unsteady induced now), 2) Loewy lift deficiency and 3) dynamic inflow. The coverage also includes correlations with the measured lag regressive‐mode damping in hover and forward flight and comparisons with similar correlations with dynamic inflow. Lag‐damping predictions with the dynamic wake model are consistently higher than the predictions with the dynamic inflow model; even for the low frequency lag regressive mode, the number of wake harmonics should at least be equal to twice the number of blades.
Resumo:
We consider three dimensional finite element computations of thermoelastic damping ratios of arbitrary bodies using Zener's approach. In our small-damping formulation, unlike existing fully coupled formulations, the calculation is split into three smaller parts. Of these, the first sub-calculation involves routine undamped modal analysis using ANSYS. The second sub-calculation takes the mode shape, and solves on the same mesh a periodic heat conduction problem. Finally, the damping coefficient is a volume integral, evaluated elementwise. In the only other decoupled three dimensional computation of thermoelastic damping reported in the literature, the heat conduction problem is solved much less efficiently, using a modal expansion. We provide numerical examples using some beam-like geometries, for which Zener's and similar formulas are valid. Among these we examine tapered beams, including the limiting case of a sharp tip. The latter's higher-mode damping ratios dramatically exceed those of a comparable uniform beam.
Resumo:
A practical method is proposed to identify the mode associated with the frequency part of the eigenvalue of the Floquet transition matrix (FTM). From the FTM eigenvector, which contains the states and their derivatives, the ratio of the derivative and the state corresponding to the largest component is computed. The method exploits the fact that the imaginary part of this (complex) ratio closely approximates the frequency of the mode. It also lends itself well to automation and has been tested over a large number of FTMs of order as high as 250.
Resumo:
A rotor-body system with blades interconnected through viscoelastic elements is analyzed for response, loads, and stability in propulsive trim in ground contact and under forward-flight conditions, A conceptual model of a multibladed rotor with rigid flap and lag motions, and the fuselage with rigid pitch and roll motions is considered, Although the interconnecting elements are placed in the in-plane direction, considerable coupling between the flap-lag motions of the blades can occur in certain ranges of interblade element stiffness, Interblade coupling can yield significant changes in the response, loads, and stability that are dependent on the interblade element and rotor-body parameters, Ground resonance stability investigations show that by tuning the interblade element stiffness, the ground resonance instability problem can be reduced or eliminated, The interblade elements with damping and stiffness provide an effective method to overcome the problems of ground and air resonance.
Resumo:
The oscillations of a drop moving in another fluid medium have been studied at low values of Reynolds number and Weber number by taking into consideration the shape of the drop and the viscosities of the two phases in addition to the interfacial tension. The deformation of the drop modifies the Lamb's expression for frequency by including a correction term while the viscous effects split the frequency into a pair of frequencies—one lower and the other higher than Lamb's. The lower frequency mode has ample experimental support while the higher frequency mode has also been observed. The two modes almost merge with Lamb's frequency for the asymptotic cases of a drop in free space or a bubble in a dense viscous fluid but the splitting becomes large when the two fluids have similar properties. Instead of oscillations, aperiodic damping modes are found to occur in drops with sizes smaller than a critical size ($\sim\hat{\rho}\hat{\nu}^2/T $). With the help of these calculations, many of the available experimental results are analyzed and discussed.
Resumo:
In the present work, we study the transverse vortex-induced vibrations of an elastically mounted rigid cylinder in a fluid flow. We employ a technique to accurately control the structural damping, enabling the system to take on both negative and positive damping. This permits a systematic study of the effects of system mass and damping on the peak vibration response. Previous experiments over the last 30 years indicate a large scatter in peak-amplitude data ($A^*$) versus the product of mass–damping ($\alpha$), in the so-called ‘Griffin plot’. A principal result in the present work is the discovery that the data collapse very well if one takes into account the effect of Reynolds number ($\mbox{\textit{Re}}$), as an extra parameter in a modified Griffin plot. Peak amplitudes corresponding to zero damping ($A^*_{{\alpha}{=}0}$), for a compilation of experiments over a wide range of $\mbox{\textit{Re}}\,{=}\,500-33000$, are very well represented by the functional form $A^*_{\alpha{=}0} \,{=}\, f(\mbox{\textit{Re}}) \,{=}\, \log(0.41\,\mbox{\textit{Re}}^{0.36}$). For a given $\mbox{\textit{Re}}$, the amplitude $A^*$ appears to be proportional to a function of mass–damping, $A^*\propto g(\alpha)$, which is a similar function over all $\mbox{\textit{Re}}$. A good best-fit for a wide range of mass–damping and Reynolds number is thus given by the following simple expression, where $A^*\,{=}\, g(\alpha)\,f(\mbox{\textit{Re}})$: \[ A^* \,{=}\,(1 - 1.12\,\alpha + 0.30\,\alpha^2)\,\log (0.41\,\mbox{\textit{Re}}^{0.36}). \] In essence, by using a renormalized parameter, which we define as the ‘modified amplitude’, $A^*_M\,{=}\,A^*/A^*_{\alpha{=}0}$, the previously scattered data collapse very well onto a single curve, $g(\alpha)$, on what we refer to as the ‘modified Griffin plot’. There has also been much debate over the last three decades concerning the validity of using the product of mass and damping (such as $\alpha$) in these problems. Our results indicate that the combined mass–damping parameter ($\alpha$) does indeed collapse peak-amplitude data well, at a given $\mbox{\textit{Re}}$, independent of the precise mass and damping values, for mass ratios down to $m^*\,{=}\,1$.
Resumo:
Previous work involving the squeeze-film flow of a model paste substance, a mixture of clay particles and mineral oil commonly known as ‘Plasticine’, has suggested that it behaves as a simple Herschel-Bulkley fluid which exhibits little strain history. However, tensile measurements, which are naturally limited to small strains by the onset of necking, indicate that this material shows strain hardening. A two roll-mill is employed here to investigate the influence of larger extensional strains. The data are analysed using an available first order engineering plasticity solution. The results confirm that this material exhibits both extensional strain and strain rate hardening. This observed strain hardening effect, which is not observed in the squeeze-film experiments, is attributed, in part, to the more homogeneous deformation fields induced during rolling and tensile extension.
Resumo:
This paper makes an attempt to assess the benefits of replacing a conventional generator excitation system (AVR + PSS) with a nonlinear voltage regulator using the concepts of synchronizing and damping torque components in a single machine infinite bus (SMIB) system. In recent years, there has been considerable interest in designing nonlinear excitation controllers, which are expected to give better dynamic performance over a wider range of system and operating conditions. The performance of these controllers is often justified by simulation studies on few test cases which may not adequately represent the diverse operating conditions of a typical power system. The performance of two such nonlinear controllers which are designed based on feedback linearization and include automatic voltage regulation with good dynamic performance have been analyzed using an SMIB model. Linearizing the nonlinear control laws along with the SMIB system equations, a Heffron Phillip's type of a model has been derived. Concepts of synchronizing and damping torque components have been used to show that such controllers can impair the small signal stability under certain operating conditions. This paper shows the possibility of negative damping contribution due to nonlinear voltage regulators and gives a new insight on understanding the physical impact of complex nonlinear control laws on power system dynamics.
Resumo:
In this paper we model a scenario where a ship uses decoys to evade a hostile torpedo. We address the problem of enhancing ship survivability against enemy torpedoes by using single and multiple decoy deployments. We incorporate deterministic ship maneuvers and realistic constraints on turn rates, field of view, etc in the model. We formulate the objective function to quantify and maximize the survivability of the ship in terms of maximizing the intercept time. We introduce the concept of optimal deployment regions, same side deployment, and zig-zag deployment strategies. Finally, we present simulation results.
Resumo:
In the present investigation, a strongly bonded strip of an aluminium-magnesium based alloy AA5086 is successfully produced through accumulative roll bonding (ARB). A maximum of up to eight passes has been used for the purpose. Microstructural characterization using electron backscatter diffraction (EBSD) technique indicates the formation of submicron sized (similar to 200-300 nm) subgrains inside the layered microstructure. The material is strongly textured where individual layers possess typical FCC rolling texture components. More than three times enhancement in 0.2% proof stress (PS) has been obtained after 8 passes due to grain refinement and strain hardening. (C) 2011 Elsevier B.V. All rights reserved.