201 resultados para Shear Flows
Resumo:
A generalization of the isotropic theory of Batchelor & Proudman (1954) is developed to estimate the effect of sudden but arbitrary three-dimensional distortion on homogeneous, initially axisymmetric turbulence. The energy changes due to distortion are expressed in terms of the Fourier coefficients of an expansion in zonal harmonics of the two independent scalar functions that describe the axisymmetric spectral tensor. However, for two special but non-trivial forms of this tensor, which represent possibly the simplest kinds of non-isotropic turbulence and specify the angular distribution but not the wavenumber dependence, the energy ratios have been determined in closed form. The deviation of the ratio from its isotropic value is the product of a factor containing R, the initial value of the ratio of the longitudinal to the transverse energy component, and another factor depending only on the geometry of the distortion. It is found that, in axisymmetric and large two-dimensional contractions, the isotropic theory gives nearly the correct longitudinal energy, but (when R > 1) over-estimates the increase in the transverse energy; the product of the two intensities varies little unless the distortion is very large, thus accounting for the stress-freezing observed in rapidly accelerated shear flows.Comparisons with available experimental data for the spectra and for the energy ratios show reasonable agreement. The different ansatzes predict results in broad qualitative agreement with a simple strategem suggested by Reynolds & Tucker (1975), but the quantitative differences are not always negligible.
Resumo:
Current analytical work on the effect of convection on the late stages of spinodal decomposition in liquids is briefly described. The morphology formed during the spinodal decomposition process depends on the relative composition of the two species. Droplet spinodal decomposition occurs when the concentration of one of the species is small. Convective transport has a significant effect on the scaling laws in the late-stage coarsening of droplets in translational or shear flows. In addition, convective transport could result in an attractive interaction between non-Brownian droplets which could lead to coalescence. The effect of convective transport for the growth of random interfaces in a near-symmetric quench was analysed using an area distribution function, which gives the distribution of surface area of the interface in curvature space. It was found that the curvature of the interface decreases proportional to time t in the late stages of spinodal decomposition, and the surface area also decreases proportional to t.
Resumo:
The slow flow of granular materials is often marked by the existence of narrow shear layers, adjacent to large regions that suffer little or no deformation. This behaviour, in the regime where shear stress is generated primarily by the frictional interactions between grains, has so far eluded theoretical description. In this paper, we present a rigid-plastic frictional Cosserat model that captures thin shear layers by incorporating a microscopic length scale. We treat the granular medium as a Cosserat continuum, which allows the existence of localised couple stresses and, therefore, the possibility of an asymmetric stress tensor. In addition, the local rotation is an independent field variable and is not necessarily equal to the vorticity. The angular momentum balance, which is implicitly satisfied for a classical continuum, must now be solved in conjunction with the linear momentum balances. We extend the critical state model, used in soil plasticity, for a Cosserat continuum and obtain predictions for flow in plane and cylindrical Couette devices. The velocity profile predicted by our model is in qualitative agreement with available experimental data. In addition, our model can predict scaling laws for the shear layer thickness as a function of the Couette gap, which must be verified in future experiments. Most significantly, our model can determine the velocity field in viscometric flows, which classical plasticity-based model cannot.
Resumo:
In this work, we present a numerical study of flow of shear thinning viscoelastic fluids in rectangular lid driven cavities for a wide range of aspect ratios (depth to width ratio) varying from 1/16 to 4. In particular, the effect of elasticity, inertia, model parameters and polymer concentration on flow features in rectangular driven cavity has been studied for two shear thinning viscoelastic fluids, namely, Giesekus and linear PTT. We perform numerical simulations using the symmetric square root representation of the conformation tensor to stabilize the numerical scheme against the high Weissenberg number problem. The variation in flow structures associated with merging and splitting of elongated vortices in shallow cavities and coalescence of corner eddies to yield a second primary vortex in deep cavities with respect to the variation in flow parameters is discussed. We discuss the effect of the dominant eigenvalues and the corresponding eigenvectors on the location of the primary eddy in the cavity. We also demonstrate, by performing numerical simulations for shallow and deep cavities, that where the Deborah number (based on convective time scale) characterizes the elastic behaviour of the fluid in deep cavities, Weissenberg number (based on shear rate) should be used for shallow cavities. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
The unsteady turbulent incompressible boundary-layer flow over two-dimensional and axisymmetric bodies with pressure gradient has been studied. An eddy-viscosity model has been used to model the Reynolds shear stress. The unsteadiness is due to variations in the free stream velocity with time. The nonlinear partial differential equation with three independent variables governing the flow has been solved using Keller's Box method. The results indicate that the free stram velocity distribution exerts strong influence on the boundary-layer characteristics. The point of zero skin friction is found to move upstream as time increases.
Resumo:
To capture shear localization in the flow of dense granular materials in a continuum description, it has earlier been proposed that granular materials be treated as Cosserat, or micropolar, continua. Here, we provide experimental verification of the kinematic Cosserat effect, or the deviation of the particle spin from the material spin induced by the velocity gradient. Contrary to earlier belief, we find this effect to be sizable even outside the shear layers. Remarkably, the particles and material elements spin in opposite directions in flow through a hopper.
Resumo:
The structure and dynamics of the two-dimensional linear shear flow of inelastic disks at high area fractions are analyzed. The event-driven simulation technique is used in the hard-particle limit, where the particles interact through instantaneous collisions. The structure (relative arrangement of particles) is analyzed using the bond-orientational order parameter. It is found that the shear flow reduces the order in the system, and the order parameter in a shear flow is lower than that in a collection of elastic hard disks at equilibrium. The distribution of relative velocities between colliding particles is analyzed. The relative velocity distribution undergoes a transition from a Gaussian distribution for nearly elastic particles, to an exponential distribution at low coefficients of restitution. However, the single-particle distribution function is close to a Gaussian in the dense limit, indicating that correlations between colliding particles have a strong influence on the relative velocity distribution. This results in a much lower dissipation rate than that predicted using the molecular chaos assumption, where the velocities of colliding particles are considered to be uncorrelated.
Resumo:
IN the last two decades, the instantaneous structure of a turbulent boundary layer has been examined by many in an effort to understand the dynamics of the flow. Distinct and well-defined flow patterns that seem to have great relevance to the turbulence production mechanism have been observed in the wall region.1'2 The flow near the wall is intermittent with periodic eruptions of the fluid, a phenomenon generally termed "bursting process." Earlier investigations in this field were limited to liquid flows at low speeds and the entire flowpattern was observed using flow visualization techniques.Study was later extended to boundary-layer flows in windtunnels at higher speeds and Reynolds numbers using hot-wiresignals for the analysis of the bursting phenomenon.
Resumo:
A formal way of deriving fluctuation-correlation relations in dense sheared granular media, starting with the Enskog approximation for the collision integral in the Chapman-Enskog theory, is discussed. The correlation correction to the viscosity is obtained using the ring-kinetic equation, in terms of the correlations in the hydrodynamic modes of the linearised Enskog equation. It is shown that the Green-Kubo formula for the shear viscosity emerges from the two-body correlation function obtained from the ring-kinetic equation.
Resumo:
Steady laminar flow of a non-Newtonian fluid based on couple stress fluid theory, through narrow tubes of varying cross-sections has been studied theoretically. Asymptotic solutions are obtained for the basic equations and the expressions for the velocity field and the wall shear stress are derived for a general cross-section. Computation and discussions are carried out for the geometries which occur in the context of physiological flows or in particular blood flows. The tapered tubes and constricted tubes are of special importance. It is observed that increase in certain parameters results in erratic flow behaviour proximal to the constricted areas which is further enhanced by the increase in the geometric parameters. This elucidates the implications of the flow in the development of vascular lesions.
Resumo:
Experimental studies on the measurement of pressure fields in the region of separating and reattaching flows behind several two-dimensional fore-bodies and one axisymmetric body are reported. In particular, extensive measurements of mean pressure, surface pressure fluctuation, and pressure fluctuation within the flow were made for a series of two-dimensional fore-body shapes consisting of triangular nose with varying included angle. The measurements from different bodies are compared and one of the important findings is that the maximum values of rms pressure fluctuation levels in the shear layer approaching reattachment are almost equal to the maximum value of the surface fluctuation levels.
Resumo:
Exact free surface flows with shear in a compressible barotropic medium are found, extending the authors' earlier work for the incompressible medium. The barotropic medium is of finite extent in the vertical direction, while it is infinite in the horizontal direction. The ''shallow water'' equations for a compressible barotropic medium, subject to boundary conditions at the free surface and at the bottom, are solved in terms of double psi-series, Simple wave and time-dependent solutions are found; for the former the free surface is of arbitrary shape while for the latter it is a damping traveling wave in the horizontal direction, For other types of solutions, the height of the free surface is constant either on lines of constant acceleration or on lines of constant speed. In the case of an isothermal medium, when gamma = 1, we again find simple wave and time-dependent solutions.
Resumo:
In the present work, we experimentally study the flow of water over textured hydrophobic surfaces in a micro-channel. Shear stress measurements are done along with direct visualization of trapped air pockets on the hydrophobic surface. The trapped air pockets on such surfaces are known to be responsible for apparent slip at these surfaces and hence in significant drag reduction. In typical circumstances, the apparent slip reduces over time as seen, for example, from our shear stress measurements. This implies that the drag reduction will not be sustained. We have performed extensive visualizations of the trapped air pockets while varying flow parameters like the flow rate and the pressure. We present here direct visualizations that show that under some conditions, the air pockets can grow with time. The variation of the air pocket size with time is found to change qualitatively and quantitatively as the flow rate is varied. These measured changes in the air pocket size with time have a direct bearing on the sustainability of apparent slip in micro-channel flows.
Resumo:
The cylindrical Couette device is commonly employed to study the rheology of fluids, but seldom used for dense granular materials. Plasticity theories used for granular flows predict a stress field that is independent of the shear rate, but otherwise similar to that in fluids. In this paper we report detailed measurements of the stress as a function of depth, and show that the stress profile differs fundamentally from that of fluids, from the predictions of plasticity theories, and from intuitive expectation. In the static state, a part of the weight of the material is transferred to the walls by a downward vertical shear stress, bringing about the well-known Janssen saturation of the stress in vertical columns. When the material is sheared, the vertical shear stress changes sign, and the magnitudes of all components of the stress rise rapidly with depth. These qualitative features are preserved over a range of the Couette gap and shear rate, for smooth and rough walls and two model granular materials. To explain the anomalous rheological response, we consider some hypotheses that seem plausibleapriori, but showthat none survive after careful analysis of the experimental observations. We argue that the anomalous stress is due to an anisotropic fabric caused by the combined actions of gravity, shear, and frictional walls, for which we present indirect evidence from our experiments. A general theoretical framework for anisotropic plasticity is then presented. The detailed mechanics of how an anisotropic fabric is brought about by the above-mentioned factors is not clear, and promises to be a challenging problem for future investigations. (C) 2013 AIP Publishing LLC.
Resumo:
The linear stability analysis of a plane Couette flow of an Oldroyd-B viscoelastic fluid past a flexible solid medium is carried out to investigate the role of polymer addition in the stability behavior. The system consists of a viscoelastic fluid layer of thickness R, density rho, viscosity eta, relaxation time lambda, and retardation time beta lambda flowing past a linear elastic solid medium of thickness HR, density rho, and shear modulus G. The emphasis is on the high-Reynolds-number wall-mode instability, which has recently been shown in experiments to destabilize the laminar flow of Newtonian fluids in soft-walled tubes and channels at a significantly lower Reynolds number than that for flows in rigid conduits. For Newtonian fluids, the linear stability studies have shown that the wall modes become unstable when flow Reynolds number exceeds a certain critical value Re c which scales as Sigma(3/4), where Reynolds number Re = rho VR/eta, V is the top-plate velocity, and dimensionless parameter Sigma = rho GR(2)/eta(2) characterizes the fluid-solid system. For high-Reynolds-number flow, the addition of polymer tends to decrease the critical Reynolds number in comparison to that for the Newtonian fluid, indicating a destabilizing role for fluid viscoelasticity. Numerical calculations show that the critical Reynolds number could be decreased by up to a factor of 10 by the addition of small amount of polymer. The critical Reynolds number follows the same scaling Re-c similar to Sigma(3/4) as the wall modes for a Newtonian fluid for very high Reynolds number. However, for moderate Reynolds number, there exists a narrow region in beta-H parametric space, corresponding to very dilute polymer solution (0.9 less than or similar to beta < 1) and thin solids (H less than or similar to 1.1), in which the addition of polymer tends to increase the critical Reynolds number in comparison to the Newtonian fluid. Thus, Reynolds number and polymer properties can be tailored to either increase or decrease the critical Reynolds number for unstable modes, thus providing an additional degree of control over the laminar-turbulent transition.