26 resultados para Service awareness
Resumo:
The optimal tradeoff between average service cost rate and average delay, is addressed for a M/M/1 queueing model with queue-length dependent service rates, chosen from a finite set. We provide an asymptotic characterization of the minimum average delay, when the average service cost rate is a small positive quantity V more than the minimum average service cost rate required for stability. We show that depending on the value of the arrival rate, the assumed service cost rate function, and the possible values of the service rates, the minimum average delay either a) increases only to a finite value, b) increases without bound as log(1/V), or c) increases without bound as 1/V, when V down arrow 0. We apply the analysis to a flow-level resource allocation model for a wireless downlink. We also investigate the asymptotic tradeoff for a sequence of policies which are obtained from an approximate fluid model for the M/M/1 queue.
Resumo:
The key requirements for enabling real-time remote healthcare service on a mobile platform, in the present day heterogeneous wireless access network environment, are uninterrupted and continuous access to the online patient vital medical data, monitor the physical condition of the patient through video streaming, and so on. For an application, this continuity has to be sufficiently transparent both from a performance perspective as well as a Quality of Experience (QoE) perspective. While mobility protocols (MIPv6, HIP, SCTP, DSMIP, PMIP, and SIP) strive to provide both and do so, limited or non-availability (deployment) of these protocols on provider networks and server side infrastructure has impeded adoption of mobility on end user platforms. Add to this, the cumbersome OS configuration procedures required to enable mobility protocol support on end user devices and the user's enthusiasm to add this support is lost. Considering the lack of proper mobility implementations that meet the remote healthcare requirements above, we propose SeaMo+ that comprises a light-weight application layer framework, termed as the Virtual Real-time Multimedia Service (VRMS) for mobile devices to provide an uninterrupted real-time multimedia information access to the mobile user. VRMS is easy to configure, platform independent, and does not require additional network infrastructure unlike other existing schemes. We illustrate the working of SeaMo+ in two realistic remote patient monitoring application scenarios.
Resumo:
In this paper we present the design of ``e-SURAKSHAK,'' a novel cyber-physical health care management system of Wireless Embedded Internet Devices (WEIDs) that sense vital health parameters. The system is capable of sensing body temperature, heart rate, oxygen saturation level and also allows noninvasive blood pressure (NIBP) measurement. End to end internet connectivity is provided by using 6LoWPAN based wireless network that uses the 802.15.4 radio. A service oriented architecture (SOA) 1] is implemented to extract meaningful information and present it in an easy-to-understand form to the end-user instead of raw data made available by sensors. A central electronic database and health care management software are developed. Vital health parameters are measured and stored periodically in the database. Further, support for real-time measurement of health parameters is provided through a web based GUI. The system has been implemented completely and demonstrated with multiple users and multiple WEIDs.
Resumo:
Femtocells are a new concept which improves the coverage and capacity of a cellular system. We consider the problem of channel allocation and power control to different users within a Femtocell. Knowing the channels available, the channel states and the rate requirements of different users the Femtocell base station (FBS), allocates the channels to different users to satisfy their requirements. Also, the Femtocell should use minimal power so as to cause least interference to its neighboring Femtocells and outside users. We develop efficient, low complexity algorithms which can be used online by the Femtocell. The users may want to transmit data or voice. We compare our algorithms with the optimal solutions.
Resumo:
In the process of service provisioning, providing required service to the user without user intervention, with reduction of the cognitive over loading is a real challenge. In this paper we propose a user centred context aware collaborative service provisioning system, which make use of context along with collaboration to provide the required service to the user dynamically. The system uses a novel approach of query expansion along with interactive and rating matrix based collaboration. Performance of the system is evaluated in Mobile-Commerce environment. The results show that the system is time efficient and perform with better precision and recall in comparison with context aware system.
Resumo:
We consider the problem of characterizing the minimum average delay, or equivalently the minimum average queue length, of message symbols randomly arriving to the transmitter queue of a point-to-point link which dynamically selects a (n, k) block code from a given collection. The system is modeled by a discrete time queue with an IID batch arrival process and batch service. We obtain a lower bound on the minimum average queue length, which is the optimal value for a linear program, using only the mean (λ) and variance (σ2) of the batch arrivals. For a finite collection of (n, k) codes the minimum achievable average queue length is shown to be Θ(1/ε) as ε ↓ 0 where ε is the difference between the maximum code rate and λ. We obtain a sufficient condition for code rate selection policies to achieve this optimal growth rate. A simple family of policies that use only one block code each as well as two other heuristic policies are shown to be weakly optimal in the sense of achieving the 1/ε growth rate. An appropriate selection from the family of policies that use only one block code each is also shown to achieve the optimal coefficient σ2/2 of the 1/ε growth rate. We compare the performance of the heuristic policies with the minimum achievable average queue length and the lower bound numerically. For a countable collection of (n, k) codes, the optimal average queue length is shown to be Ω(1/ε). We illustrate the selectivity among policies of the growth rate optimality criterion for both finite and countable collections of (n, k) block codes.
Resumo:
In this paper we present a combination of technologies to provide an Energy-on-Demand (EoD) service to enable low cost innovation suitable for microgrid networks. The system is designed around the low cost and simple Rural Energy Device (RED) Box which in combination with Short Message Service (SMS) communication methodology serves as an elementary proxy for Smart meters which are typically used in urban settings. Further, customer behavior and familiarity in using such devices based on mobile experience has been incorporated into the design philosophy. Customers are incentivized to interact with the system thus providing valuable behavioral and usage data to the Utility Service Provider (USP). Data that is collected over time can be used by the USP for analytics envisioned by using remote computing services known as cloud computing service. Cloud computing allows for a sharing of computational resources at the virtual level across several networks. The customer-system interaction is facilitated by a third party Telecom Service provider (TSP). The approximate cost of the RED Box is envisaged to be under USD 10 on production scale.
Resumo:
We consider optimal power allocation policies for a single server, multiuser system. The power is consumed in transmission of data only. The transmission channel may experience multipath fading. We obtain very efficient, low computational complexity algorithms which minimize power and ensure stability of the data queues. We also obtain policies when the users may have mean delay constraints. If the power required is a linear function of rate then we exploit linearity and obtain linear programs with low complexity.
Resumo:
We consider the problem of optimizing the workforce of a service system. Adapting the staffing levels in such systems is non-trivial due to large variations in workload and the large number of system parameters do not allow for a brute force search. Further, because these parameters change on a weekly basis, the optimization should not take longer than a few hours. Our aim is to find the optimum staffing levels from a discrete high-dimensional parameter set, that minimizes the long run average of the single-stage cost function, while adhering to the constraints relating to queue stability and service-level agreement (SLA) compliance. The single-stage cost function balances the conflicting objectives of utilizing workers better and attaining the target SLAs. We formulate this problem as a constrained parameterized Markov cost process parameterized by the (discrete) staffing levels. We propose novel simultaneous perturbation stochastic approximation (SPSA)-based algorithms for solving the above problem. The algorithms include both first-order as well as second-order methods and incorporate SPSA-based gradient/Hessian estimates for primal descent, while performing dual ascent for the Lagrange multipliers. Both algorithms are online and update the staffing levels in an incremental fashion. Further, they involve a certain generalized smooth projection operator, which is essential to project the continuous-valued worker parameter tuned by our algorithms onto the discrete set. The smoothness is necessary to ensure that the underlying transition dynamics of the constrained Markov cost process is itself smooth (as a function of the continuous-valued parameter): a critical requirement to prove the convergence of both algorithms. We validate our algorithms via performance simulations based on data from five real-life service systems. For the sake of comparison, we also implement a scatter search based algorithm using state-of-the-art optimization tool-kit OptQuest. From the experiments, we observe that both our algorithms converge empirically and consistently outperform OptQuest in most of the settings considered. This finding coupled with the computational advantage of our algorithms make them amenable for adaptive labor staffing in real-life service systems.
Resumo:
Clock synchronization is highly desirable in distributed systems, including many applications in the Internet of Things and Humans. It improves the efficiency, modularity, and scalability of the system, and optimizes use of event triggers. For IoTH, BLE - a subset of the recent Bluetooth v4.0 stack - provides a low-power and loosely coupled mechanism for sensor data collection with ubiquitous units (e.g., smartphones and tablets) carried by humans. This fundamental design paradigm of BLE is enabled by a range of broadcast advertising modes. While its operational benefits are numerous, the lack of a common time reference in the broadcast mode of BLE has been a fundamental limitation. This article presents and describes CheepSync, a time synchronization service for BLE advertisers, especially tailored for applications requiring high time precision on resource constrained BLE platforms. Designed on top of the existing Bluetooth v4.0 standard, the CheepSync framework utilizes low-level time-stamping and comprehensive error compensation mechanisms for overcoming uncertainties in message transmission, clock drift, and other system-specific constraints. CheepSync was implemented on custom designed nRF24Cheep beacon platforms (as broadcasters) and commercial off-the-shelf Android ported smartphones (as passive listeners). We demonstrate the efficacy of CheepSync by numerous empirical evaluations in a variety of experimental setups, and show that its average (single-hop) time synchronization accuracy is in the 10 mu s range.