352 resultados para Sequential Gaussian simulation
Resumo:
This paper presents the modeling and analysis of a voltage source converter (VSC) based back-to-back (BTB) HVDC link. The case study considers the response to changes in the active and reactive power and disturbance caused by single line to ground (SLG) fault. The controllers at each terminal are designed to inject a variable (magnitude and phase angle) sinusoidal, balanced set of voltages to regulate/control the active and reactive power. It is also possible to regulate the converter bus (AC) voltage by controlling the injected reactive power. The analysis is carried out using both d-q model (neglecting the harmonics in the output voltages of VSC) and three phase detailed model of VSC. While the eigenvalue analysis and controller design is based on the d-q model, the transient simulation considers both models.
Resumo:
This paper presents real-time simulation models of electrical machines on FPGA platform. Implementation of the real-time numerical integration methods with digital logic elements is discussed. Several numerical integrations are presented. A real-time simulation of DC machine is carried out on this FPGA platform and important transient results are presented. These results are compared to simulation results obtained through a commercial off-line simulation software.
Resumo:
Three simulations of evapotranspiration were done with two values of time step,viz 10 min and one day. Inputs to the model were weather data, including directly measured upward and downward radiation, and soil characteristics. Three soils were used for each simulation. Analysis of the results shows that the time step has a direct influence on the prediction of potential evapotranspiration, but a complex interaction of this effect with the soil moisture characteristic, rate of increase of ground cover and bare soil evaporation determines the actual transpiration predicted. The results indicate that as small a time step as possible should be used in the simulation.
Resumo:
The literature contains many examples of digital procedures for the analytical treatment of electroencephalograms, but there is as yet no standard by which those techniques may be judged or compared. This paper proposes one method of generating an EEG, based on a computer program for Zetterberg's simulation. It is assumed that the statistical properties of an EEG may be represented by stationary processes having rational transfer functions and achieved by a system of software fillers and random number generators.The model represents neither the neurological mechanism response for generating the EEG, nor any particular type of EEG record; transient phenomena such as spikes, sharp waves and alpha bursts also are excluded. The basis of the program is a valid ‘partial’ statistical description of the EEG; that description is then used to produce a digital representation of a signal which if plotted sequentially, might or might not by chance resemble an EEG, that is unimportant. What is important is that the statistical properties of the series remain those of a real EEG; it is in this sense that the output is a simulation of the EEG. There is considerable flexibility in the form of the output, i.e. its alpha, beta and delta content, which may be selected by the user, the same selected parameters always producing the same statistical output. The filtered outputs from the random number sequences may be scaled to provide realistic power distributions in the accepted EEG frequency bands and then summed to create a digital output signal, the ‘stationary EEG’. It is suggested that the simulator might act as a test input to digital analytical techniques for the EEG, a simulator which would enable at least a substantial part of those techniques to be compared and assessed in an objective manner. The equations necessary to implement the model are given. The program has been run on a DEC1090 computer but is suitable for any microcomputer having more than 32 kBytes of memory; the execution time required to generate a 25 s simulated EEG is in the region of 15 s.
Resumo:
An adaptive learning scheme, based on a fuzzy approximation to the gradient descent method for training a pattern classifier using unlabeled samples, is described. The objective function defined for the fuzzy ISODATA clustering procedure is used as the loss function for computing the gradient. Learning is based on simultaneous fuzzy decisionmaking and estimation. It uses conditional fuzzy measures on unlabeled samples. An exponential membership function is assumed for each class, and the parameters constituting these membership functions are estimated, using the gradient, in a recursive fashion. The induced possibility of occurrence of each class is useful for estimation and is computed using 1) the membership of the new sample in that class and 2) the previously computed average possibility of occurrence of the same class. An inductive entropy measure is defined in terms of induced possibility distribution to measure the extent of learning. The method is illustrated with relevant examples.
Resumo:
The electric field in certain electrostatic devices can be modeled by a grounded plate electrode affected by a corona discharge generated by a series of parallel wires connected to a DC high-voltage supply. The system of differential equations that describe the behaviour (i.e., charging and motion) of the conductive particle in such an electric field has been numerically solved, using several simplifying assumptions. Thus, it was possible to investigate the effect of various electrical and mechanical factors on the trajectories of conductive particles. This model has been employed to study the behaviour of coalparticles in fly-ash corona separators.
Resumo:
Anisotropic gaussian beams are obtained as exact solutions to the parabolic wave equation. These beams have a quadratic phase front whose principal radii of curvature are non-degenerate everywhere. It is shown that, for the lowest order beams, there exists a plane normal to the beam axis where the intensity distribution is rotationally symmetric about the beam axis. A possible application of these beams as normal modes of laser cavities with astigmatic mirrors is noted.
Resumo:
An exact expression for the calculation of gaussian path integrals involving non-local potentials is given. Its utility is demonstrated by using it to evaluate a path integral arising in the study of an electron gas in a random potential.
Resumo:
The anharmonic oscillator under combined sinusoidal and white noise excitation is studied using the Gaussian closure approximation. The mean response and the steady-state variance of the system is obtained by the WKBJ approximation and also by the Fokker Planck equation. The multiple steadystate solutions are obtained and their stability analysis is presented. Numerical results are obtained for a particular set of system parameters. The theoretical results are compared with a digital simulation study to bring out the usefulness of the present approximate theory.
Resumo:
It is now well known that in extreme quantum limit, dominated by the elastic impurity scattering and the concomitant quantum interference, the zero-temperature d.c. resistance of a strictly one-dimensional disordered system is non-additive and non-self-averaging. While these statistical fluctuations may persist in the case of a physically thin wire, they are implicitly and questionably ignored in higher dimensions. In this work, we have re-examined this question. Following an invariant imbedding formulation, we first derive a stochastic differential equation for the complex amplitude reflection coefficient and hence obtain a Fokker-Planck equation for the full probability distribution of resistance for a one-dimensional continuum with a Gaussian white-noise random potential. We then employ the Migdal-Kadanoff type bond moving procedure and derive the d-dimensional generalization of the above probability distribution, or rather the associated cumulant function –‘the free energy’. For d=3, our analysis shows that the dispersion dominates the mobilitly edge phenomena in that (i) a one-parameter B-function depending on the mean conductance only does not exist, (ii) an approximate treatment gives a diffusion-correction involving the second cumulant. It is, however, not clear whether the fluctuations can render the transition at the mobility edge ‘first-order’. We also report some analytical results for the case of the one dimensional system in the presence of a finite electric fiekl. We find a cross-over from the exponential to the power-low length dependence of resistance as the field increases from zero. Also, the distribution of resistance saturates asymptotically to a poissonian form. Most of our analytical results are supported by the recent numerical simulation work reported by some authors.
Resumo:
This paper considers the applicability of the least mean fourth (LM F) power gradient adaptation criteria with 'advantage' for signals associated with gaussian noise, the associated noise power estimate not being known. The proposed method, as an adaptive spectral estimator, is found to provide superior performance than the least mean square (LMS) adaptation for the same (or even lower) speed of convergence for signals having sufficiently high signal-to-gaussian noise ratio. The results include comparison of the performance of the LMS-tapped delay line, LMF-tapped delay line, LMS-lattice and LMF-lattice algorithms, with the Burg's block data method as reference. The signals, like sinusoids with noise and stochastic signals like EEG, are considered in this study.
Resumo:
Gaussian processes (GPs) are promising Bayesian methods for classification and regression problems. Design of a GP classifier and making predictions using it is, however, computationally demanding, especially when the training set size is large. Sparse GP classifiers are known to overcome this limitation. In this letter, we propose and study a validation-based method for sparse GP classifier design. The proposed method uses a negative log predictive (NLP) loss measure, which is easy to compute for GP models. We use this measure for both basis vector selection and hyperparameter adaptation. The experimental results on several real-world benchmark data sets show better orcomparable generalization performance over existing methods.
Resumo:
The Gaussian probability closure technique is applied to study the random response of multidegree of freedom stochastically time varying systems under non-Gaussian excitations. Under the assumption that the response, the coefficient and the excitation processes are jointly Gaussian, deterministic equations are derived for the first two response moments. It is further shown that this technique leads to the best Gaussian estimate in a minimum mean square error sense. An example problem is solved which demonstrates the capability of this technique for handling non-linearity, stochastic system parameters and amplitude limited responses in a unified manner. Numerical results obtained through the Gaussian closure technique compare well with the exact solutions.
Resumo:
Self-contained Non-Equilibrium Molecular Dynamics (NEMD) simulations using Lennard-Jones potentials were performed to identify the origin and mechanisms of atomic scale interfacial behavior between sliding metals. The mixing sequence and velocity profiles were compared via MD simulations for three cases, viz.: sell-mated, similar and hard-softvcrystal pairs. The results showed shear instability, atomic scale mixing, and generation of eddies at the sliding interface. Vorticity at the interface suggests that atomic flow during sliding is similar to fluid flow under Kelvin-Helmholtz instability and this is supported by velocity profiles from the simulations. The initial step-function velocity profile spreads during sliding. However the velocity profile does not change much at later stages of the simulation and it eventually stops spreading. The steady state friction coefficient during simulation was monitored as a function of sliding velocity. Frictional behavior can be explained on the basis of plastic deformation and adiabatic effects. The mixing layer growth kinetics was also investigated.
Resumo:
The structure and dynamics of the two-dimensional linear shear flow of inelastic disks at high area fractions are analyzed. The event-driven simulation technique is used in the hard-particle limit, where the particles interact through instantaneous collisions. The structure (relative arrangement of particles) is analyzed using the bond-orientational order parameter. It is found that the shear flow reduces the order in the system, and the order parameter in a shear flow is lower than that in a collection of elastic hard disks at equilibrium. The distribution of relative velocities between colliding particles is analyzed. The relative velocity distribution undergoes a transition from a Gaussian distribution for nearly elastic particles, to an exponential distribution at low coefficients of restitution. However, the single-particle distribution function is close to a Gaussian in the dense limit, indicating that correlations between colliding particles have a strong influence on the relative velocity distribution. This results in a much lower dissipation rate than that predicted using the molecular chaos assumption, where the velocities of colliding particles are considered to be uncorrelated.