93 resultados para SPONTANEOUS SYMMETRY BREAKING


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider a double dot system of equivalent, capacitively coupled semiconducting quantum dots, each coupled to its own lead, in a regime where there are two electrons on the double dot. Employing the numerical renormalization group, we focus here on single-particle dynamics and the zero-bias conductance, considering in particular the rich range of behaviour arising as the interdot coupling is progressively increased through the strong-coupling (SC) phase, from the spin-Kondo regime, across the SU(4) point to the charge-Kondo regime, and then towards and through the quantum phase transition to a charge-ordered ( CO) phase. We first consider the two-self-energy description required to describe the broken symmetry CO phase, and implications thereof for the non-Fermi liquid nature of this phase. Numerical results for single-particle dynamics on all frequency scales are then considered, with particular emphasis on universality and scaling of low-energy dynamics throughout the SC phase. The role of symmetry breaking perturbations is also briefly discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The numerical values of gA are evaluated using quantum-chromodynamic sum rules. The nuclear medium effects are taken into account by modifying the chiral symmetry breaking correlation, . Our results indicate a quenching of gA in a nuclear medium. The physical reasons for this fundamental quenching are noted to be the same for the effective mass of the nucleon bound in a nucleus being less than its free space value.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Physics at the Large Hadron Collider (LHC) and the International e(+)e(-) Linear Collider (ILC) will be complementary in many respects, as has been demonstrated at previous generations of hadron and lepton colliders. This report addresses the possible interplay between the LHC and ILC in testing the Standard Model and in discovering and determining the origin of new physics. Mutual benefits for the physics programme at both machines can occur both at the level of a combined interpretation of Hadron Collider and Linear Collider data and at the level of combined analyses of the data, where results obtained at one machine can directly influence the way analyses are carried out at the other machine. Topics under study comprise the physics of weak and strong electroweak symmetry breaking, supersymmetric models, new gauge theories, models with extra dimensions, and electroweak and QCD precision physics. The status of the work that has been carried out within the LHC/ILC Study Group so far is summarized in this report. Possible topics for future studies are outlined.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We calculate the kaon B parameter in quenched lattice QCD at beta=6.0 using Wilson fermions at kappa=0.154 and 0.155. We use two kinds of nonlocal (''smeared'') sources for quark propagators to calculate the matrix elements between states of definite momentum. The use of smeared sources yields results with much smaller errors than obtained in previous calculations with Wilson fermions. By combining results for p=(0,0,0) and p=(0,0,1), we show that one can carry out the noperturbative subtraction necessary to remove the dominant lattice artifacts induced by the chiral-symmetry-breaking term in the Wilson action. Our final results are in good agreement with those obtained using staggered fermions. We also present results for B parameters of the DELTAI = 3/2 part of the electromagnetic penguin operators, and preliminary results for B(K) in the presence of two flavors of dynamical quarks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The phase diagram of a hard-sphere fluid in the presence of a random pinning potential is studied analytically and numerically. In the analytic work, replicas are introduced for averaging over the quenched disorder, and the hypernetted chain approximation is used to calculate density correlations in the replicated liquid. The freezing transition of the liquid into a nearly crystalline state is studied using a density-functional approach, and the liquid to glass transition is studied using a phenomenological replica symmetry breaking approach. In the numerical work, local minima of a discretized version of the Ramakrishnan-Yussouff free-energy functional are located and the phase diagram in the density-disorder plane is obtained from an analysis of the relative stability of these minima. Both approaches lead to similar results for the phase diagram. The first-order liquid to crystalline solid transition is found to change to a continuous liquid to glass transition as the strength of the disorder is increased above a threshold value.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we propose a concept and report experimental results based on a circular array of Piezoelectric Wafer Active Sensors (PWASs) for rapid localization and parametric identification of corrosion type damage in metallic plates. Implementation of this circular array of PWASs combines the use of ultrasonic Lamb wave propagation technique and an algorithm based on symmetry breaking in the signal pattern to locate and monitor the growth of a corrosion pit on a metallic plate. Wavelet time-frequency maps of the sensor signals are employed to obtain an insight regarding the effect of corrosion growth on the Lamb wave transmission in time-frequency scale. We present here a method to eliminate the time scale, which helps in identifying easily the signature of damage in the measured signals. The proposed method becomes useful in determining the approximate location of the damage with respect to the location of three neighboring sensors in the circular array. A cumulative damage index is computed from the wavelet coefficients for varying damage sizes and the results appear promising. Damage index is plotted against the damage parameters for frequency sweep of the excitation signal (a windowed sine signal). Results of corrosion damage are compared with circular holes of various sizes to demonstrate the applicability of present method to different types of damage. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wuttig and Suzuki's model on anelastic nonlinearities in solids in the vicinity of martensite transformations is analysed numerically. This model shows chaos even in the absence of applied forcing field as a function of a temperature dependent parameter. Even though the model exhibits sustained oscillations as a function of the amplitude of the forcing term, it does not exactly capture the features of the experimental time series. We have improved the model by adding a symmetry breaking term. The improved model shows period doubling bifurcation as a function of the amplitude of the forcing term. The solutions of our improved model shows good resemblance with the nonsymmetric period four oscillation seen in the experiment. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We interpret the recent discovery of a 125 GeV Higgs-like state in the context of a two-Higgs-doublet model with a heavy fourth sequential generation of fermions, in which one Higgs doublet couples only to the fourth-generation fermions, while the second doublet couples to the lighter fermions of the first three families. This model is designed to accommodate the apparent heaviness of the fourth-generation fermions and to effectively address the low-energy phenomenology of a dynamical electroweak-symmetry-breaking scenario. The physical Higgs states of the model are, therefore, viewed as composites primarily of the fourth-generation fermions. We find that the lightest Higgs, h, is a good candidate for the recently discovered 125 GeV spin-zero particle, when tan beta similar to O(1), for typical fourth-generation fermion masses of M-4G = 400-600 GeV, and with a large t-t' mixing in the right-handed quark sector. This, in turn, leads to BR(t' -> th) similar to O(1), which drastically changes the t' decay pattern. We also find that, based on the current Higgs data, this two-Higgs-doublet model generically predicts an enhanced production rate (compared to the Standard Model) in the pp -> h -> tau tau channel, and reduced rates in the VV -> h -> gamma gamma and p (p) over bar /pp -> V -> hV -> Vbb channels. Finally, the heavier CP-even Higgs is excluded by the current data up to m(H) similar to 500 GeV, while the pseudoscalar state, A, can be as light as 130 GeV. These heavier Higgs states and the expected deviations from the Standard Model din some of the Higgs production channels can be further excluded or discovered with more data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Accurate supersymmetric spectra are required to confront data from direct and indirect searches of supersymmetry. SuSeFLAV is a numerical tool capable of computing supersymmetric spectra precisely for various supersymmetric breaking scenarios applicable even in the presence of flavor violation. The program solves MSSM RGEs with complete 3 x 3 flavor mixing at 2-loop level and one loop finite threshold corrections to all MSSM parameters by incorporating radiative electroweak symmetry breaking conditions. The program also incorporates the Type-I seesaw mechanism with three massive right handed neutrinos at user defined mass scales and mixing. It also computes branching ratios of flavor violating processes such as l(j) -> l(i)gamma, l(j) -> 3 l(i), b -> s gamma and supersymmetric contributions to flavor conserving quantities such as (g(mu) - 2). A large choice of executables suitable for various operations of the program are provided. Program summary Program title: SuSeFLAV Catalogue identifier: AEOD_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEOD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 76552 No. of bytes in distributed program, including test data, etc.: 582787 Distribution format: tar.gz Programming language: Fortran 95. Computer: Personal Computer, Work-Station. Operating system: Linux, Unix. Classification: 11.6. Nature of problem: Determination of masses and mixing of supersymmetric particles within the context of MSSM with conserved R-parity with and without the presence of Type-I seesaw. Inter-generational mixing is considered while calculating the mass spectrum. Supersymmetry breaking parameters are taken as inputs at a high scale specified by the mechanism of supersymmetry breaking. RG equations including full inter-generational mixing are then used to evolve these parameters up to the electroweak breaking scale. The low energy supersymmetric spectrum is calculated at the scale where successful radiative electroweak symmetry breaking occurs. At weak scale standard model fermion masses, gauge couplings are determined including the supersymmetric radiative corrections. Once the spectrum is computed, the program proceeds to various lepton flavor violating observables (e.g., BR(mu -> e gamma), BR(tau -> mu gamma) etc.) at the weak scale. Solution method: Two loop RGEs with full 3 x 3 flavor mixing for all supersymmetry breaking parameters are used to compute the low energy supersymmetric mass spectrum. An adaptive step size Runge-Kutta method is used to solve the RGEs numerically between the high scale and the electroweak breaking scale. Iterative procedure is employed to get the consistent radiative electroweak symmetry breaking condition. The masses of the supersymmetric particles are computed at 1-loop order. The third generation SM particles and the gauge couplings are evaluated at the 1-loop order including supersymmetric corrections. A further iteration of the full program is employed such that the SM masses and couplings are consistent with the supersymmetric particle spectrum. Additional comments: Several executables are presented for the user. Running time: 0.2 s on a Intel(R) Core(TM) i5 CPU 650 with 3.20 GHz. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider minimal models of gauge mediated supersymmetry breaking with an extra U(1) factor in addition to the Standard Model gauge group. A U(1) charged, Standard Model singlet is assumed to be present which allows for an additional NMSSM like coupling, lambda HuHdS. The U(1) is assumed to be flavour universal. Anomaly cancellation in the MSSM sector requires additional coloured degrees of freedom. The S field can get a large vacuum expectation value along with consistent electroweak symmetry breaking. It is shown that the lightest CP even Higgs boson can attain mass of the order of 125 GeV. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using polarization-dependent x-ray photoemission electron microscopy, we have investigated the surface effects on antiferromagnetic (AFM) domain formation. Depth-resolved information obtained from our study indicates the presence of strain-induced surface AFM domains on some of the cleaved NiO(100) crystals, which are unusually thinner than bulk AFM domain wall widths (similar to 150 nm). Existence of such magnetic skin layer is substantiated by exchange-coupled ferromagnetic Fe domains in Fe/NiO(100), thereby evidencing the influence of this surface AFM domains on interfacial magnetic coupling. Our observations demonstrate a depth evolution of AFM structure in presence of induced surface strain, while the surface symmetry-breaking in absence of induced strain does not modify the bulk AFM domain structure. Realization of such thin surface AFM layer will provide better microscopic understanding of the exchange bias phenomena. (C) 2014 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Planck scale lepton number violation is an interesting and natural possibility to explain nonzero neutrino masses. We consider such operators in the context of Randall-Sundrum (RS1) scenarios. Implementation of this scenario with a single Higgs localized on the IR brane (standard RS1) is not phenomenologically viable as they lead to inconsistencies in the charged lepton mass fits. In this paper we propose a setup with two Higgs doublets. We present a detailed numerical analysis of the fits to fermion masses and mixing angles. This model solves the issues regarding the fermion mass fits but solutions with consistent electroweak symmetry breaking are highly fine-tuned. A simple resolution is to consider supersymmetry in the bulk and a detailed discussion of which is provided. Constraints from flavor are found to be strong and minimal flavor violation (MFV) is imposed to alleviate them.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using numerical diagonalization we study the crossover among different random matrix ensembles (Poissonian, Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE) and Gaussian symplectic ensemble (GSE)) realized in two different microscopic models. The specific diagnostic tool used to study the crossovers is the level spacing distribution. The first model is a one-dimensional lattice model of interacting hard-core bosons (or equivalently spin 1/2 objects) and the other a higher dimensional model of non-interacting particles with disorder and spin-orbit coupling. We find that the perturbation causing the crossover among the different ensembles scales to zero with system size as a power law with an exponent that depends on the ensembles between which the crossover takes place. This exponent is independent of microscopic details of the perturbation. We also find that the crossover from the Poissonian ensemble to the other three is dominated by the Poissonian to GOE crossover which introduces level repulsion while the crossover from GOE to GUE or GOE to GSE associated with symmetry breaking introduces a subdominant contribution. We also conjecture that the exponent is dependent on whether the system contains interactions among the elementary degrees of freedom or not and is independent of the dimensionality of the system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

I consider theories of gravity built not just from the metric and affine connection, but also other (possibly higher rank) symmetric tensor(s). The Lagrangian densities are scalars built from them, and the volume forms are related to Cayley's hyperdeterminants. The resulting diff-invariant actions give rise to geometric theories that go beyond the metric paradigm (even metric-less theories are possible), and contain Einstein gravity as a special case. Examples contain theories with generalizeations of Riemannian geometry. The 0-tensor case is related to dilaton gravity. These theories can give rise to new types of spontaneous Lorentz breaking and might be relevant for ``dark'' sector cosmology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is by now clear that the infrared sector of quantum electrodynamics (QED) has an intriguingly complex structure. Based on earlier pioneering work on this subject, two of us recently proposed a simple modification of QED by constructing a generalization of the U(1) charge group of QED to the ``Sky'' group incorporating the well-known spontaneous Lorentz violation due to infrared photons, but still compatible in particular with locality (Balachandran and Vaidya, Eur Phys J Plus 128:118, 2013). It was shown that the ``Sky'' group is generated by the algebra of angle-dependent charges and a study of its superselection sectors has revealed a manifest description of spontaneous breaking of the Lorentz symmetry. We further elaborate this approach here and investigate in some detail the properties of charged particles dressed by the infrared photons. We find that Lorentz violation due to soft photons may be manifestly codified in an angle-dependent fermion mass, modifying therefore the fermion dispersion relations. The fact that the masses of the charged particles are not Lorentz invariant affects their spin content, and time dilation formulas for decays should also get corrections.