109 resultados para SPHERICAL-SHELL
Resumo:
A long two-layered circular cylinder having a thin orthotropic outer shell and a thick transversely isotropic core subjected to an axisymmetric radialv line load has been analysed. For analysis of the outer shell the classical thin shell theory was adopted and for analysis of the inner core the elasticity theory was used. The continuity of stresses and deformations at the interface has been satisfied by assumming perfect adhesion between the layers. Numerical results have been presented for two different ratios of outer shell thickness to inner radius and for three different ratios of modulus of elasticity in the radial direction of outer shell to inner core. The results have been compared with the elasticity solution of the same problem to bring out the reliability of this hybrid method. References
Resumo:
The stress problem of two equal circular elastic inclusions in a pressurised cylindrical shell has been solved by using single inclusion solutions together with Graf’s addition theorem. The effect of the inter-inclusion distance on the interface stresses in the shell as well as in the inclusion is studied. The results obtained for small values of curvature parameter fi @*=(a*/8Rt) [12(1-v*)]“*, a, R, t being inclusion radius and shell radius and thickness) when compared with the flat-plate results show good agreement. The results obtained in non-dimensional form are presented graphically.
Resumo:
We present a unified approach to repulsion in ionic and van der Waals solids based on a compressible-ion/atom model. Earlier studies have shown that repulsion in ionic crystals can be viewed as arising from the compression energy of ions, described by two parameters per ion. Here we obtain the compression parameters of the rare-gas atoms Ne. Ar. Kr and Xe by interpolation using the known parameters of related equi-electronic ions (e.g. Ar from S2-. Cl-, K- and Ca2-). These parameters fit the experimental zero-temperature interatomic distances and compressibilities of the rare-gas crystals satisfactorily. A hightemperature equation of state based on an Einstein model of thermal motions is used to calculate the thermal expansivities, compressibilities and their temperature derivatives for Ar. Kr and Xe. It is argued that an instability at higher temperatures represents the limit to which the solid can be superheated. beyond which sublimation must occur.
Resumo:
Near the boundaries of shells, thin shell theories cannot always provide a satisfactory description of the kinematic situation. This imposes severe limitations on simulating the boundary conditions in theoretical shell models. Here an attempt is made to overcome the above limitation. Three-dimensional theory of elasticity is used near boundaries, while thin shell theory covers the major part of the shell away from the boundaries. Both regions are connected by means of an “interphase element.” This method is used to study typical static stress and natural vibration problems
Resumo:
The details of development of the stiffness matrix of a laminated anisotropic curved beam finite element are reported. It is a 16 dof element which makes use of 1-D first order Hermite interpolation polynomials for expressing it's assumed displacement state. The performance of the element is evaluated considering various examples for which analytical or other solutions are available.
Resumo:
The problem of an infinite transversely isotropic circular cylindrical shell subjected to an axisymmetric radial external line load is investigated using elasticity theory, classical shell theory and shear deformation theory. The results obtained by these methods are compared for two ratios of inner to outer shell radius and for varying degrees of anisotropy. Some typical results are given here to show the effect of anisotropy and the thickness of the shell on the distribution of stresses and displacements.
Resumo:
A perturbation technique is used to determine the stress concentration around reinforced curvilinear holes in thin pressurized spherical shells. Starting from the governing differential equations for thin shallow spherical shells, a solution is first obtained for a circular hole. The solution for an arbitrary shaped curvilinear hole is then obtained as a first-order perturbation over the circular hole solution using the conformal mapping technique. The effects of a large number of parameters involved in the design of a reinforcement around cutouts in shells are studied. The problems of symmetric and eccentric reinforcements are also considered. The results obtained would be very helpful in the design of an efficient reinforcement for elliptical and square holes in thin shallow spherical shells.
Resumo:
Using a singular perturbation analysis the nonplanar Burgers' equation is solved to yield the shock wave-displacement due to diffusion for spherical and cylindrical N waves, thus supplementing the earlier results of Lighthill for the plane N waves. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
Composite of anatase titania (TiO2) nanospheres and carbon grown and self-assembled into micron-sized mesoporous spheres via a solvothermal synthesis route are discussed here in the context of rechargeable lithium-ion battery. The morphology and carbon content and hence the electrochemical performance are observed to be significantly influenced by the synthesis parameters. Synthesis conditions resulting in a mesoporous arrangement of an optimized amount carbon and TiO2 exhibited the best lithium battery performance. The first discharge cycle capacity of carbon-titania mesoporous spheres (solvothermal reaction at 150 degrees C at 6 h, calcination at 500 degrees C under air, BET surface area 80 m(2)g(-1)) was 334 mAhg(-1) (approximately 1 Li) at current rate of 0.066 Ag-1. High storage capacity and good cyclability is attributed to the nanostructuring of TiO2 (mesoporosity) as well as due to formation of a percolation network of carbon around the TiO2 nanoparticles. The micron-sized mesoporous spheres of carbon-titania composite nanoparticles also show good rate cyclability in the range (0.066-6.67) Ag-1.
Resumo:
Using asymptotics, the coupled wavenumbers in an infinite fluid-filled flexible cylindrical shell vibrating in the beam mode (viz. circumferential wave order n = 1) are studied. Initially, the uncoupled wavenumbers of the acoustic fluid and the cylindrical shell structure are discussed. Simple closed form expressions for the structural wavenumbers (longitudinal, torsional and bending) are derived using asymptotic methods for low- and high-frequencies. It is found that at low frequencies the cylinder in the beam mode behaves like a Timoshenko beam. Next, the coupled dispersion equation of the system is rewritten in the form of the uncoupled dispersion equation of the structure and the acoustic fluid, with an added fluid-loading term involving a parameter mu due to the coupling. An asymptotic expansion involving mu is substituted in this equation. Analytical expressions are derived for the coupled wavenumbers (as modifications to the uncoupled wavenumbers) separately for low- and high-frequency ranges and further, within each frequency range, for large and small values of mu. Only the flexural wavenumber, the first rigid duct acoustic cut-on wavenumber and the first pressure-release acoustic cut-on wavenumber are considered. The general trend found is that for small mu, the coupled wavenumbers are close to the in vacuo structural wavenumber and the wavenumbers of the rigid-acoustic duct. With increasing mu, the perturbations increase, until the coupled wavenumbers are better identified as perturbations to the pressure-release wavenumbers. The systematic derivation for the separate cases of small and large mu gives more insight into the physics and helps to continuously track the wavenumber solutions as the fluid-loading parameter is varied from small to large values. Also, it is found that at any frequency where two wavenumbers intersect in the uncoupled analysis, there is no more an intersection in the coupled case, but a gap is created at that frequency. This method of asymptotics is simple to implement using a symbolic computation package (like Maple). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The coupled wavenumbers of a fluid-filled flexible cylindrical shell vibrating in the axisymmetric mode are studied. The coupled dispersion equation of the system is rewritten in the form of the uncoupled dispersion equation of the structure and the acoustic fluid, with an added fluid-loading term involving a parameter e due to the coupling. Using the smallness of Poisson's ratio (v), a double-asymptotic expansion involving e and v 2 is substituted in this equation. Analytical expressions are derived for the coupled wavenumbers (for large and small values of E). Different asymptotic expansions are used for different frequency ranges with continuous transitions occurring between them. The wavenumber solutions are continuously tracked as e varies from small to large values. A general trend observed is that a given wavenumber branch transits from a rigidwalled solution to a pressure-release solution with increasing E. Also, it is found that at any frequency where two wavenumbers intersect in the uncoupled analysis, there is no more an intersection in the coupled case, but a gap is created at that frequency. Only the axisymmetric mode is considered. However, the method can be extended to the higher order modes.
Resumo:
Given a real-valued function on R-n we study the problem of recovering the function from its spherical means over spheres centered on a hyperplane. An old paper of Bukhgeim and Kardakov derived an inversion formula for the odd n case with great simplicity and economy. We apply their method to derive an inversion formula for the even n case. A feature of our inversion formula, for the even n case, is that it does not require the Fourier transform of the mean values or the use of the Hilbert transform, unlike the previously known inversion formulas for the even n case. Along the way, we extend the isometry identity of Bukhgeim and Kardakov for odd n, for solutions of the wave equation, to the even n case.
Resumo:
The synthesis of colloids of copper and zinc nanoparticles by solvated metal atom dispersion (SMAD) is described. The as-prepared colloids with a large size distribution of the particles are transformed into colloidal nanoparticles of a narrow size distribution by the digestive ripening process which involves refluxing the colloid at or near the boiling point of the solvent in the presence of a passivating ligand. The copper nanoparticles of 2.1 ± 0.3 nm and zinc nanoparticles of 3.9 ± 0.3 nm diameters have thus been obtained. Digestive ripening of the as-prepared copper and zinc colloids together in the presence of a passivating agent gave Cu@ZnO core−shell nanoparticles, with an average diameter of 3.0 ± 0.7 nm. Particles synthesized in this manner were characterized by UV−visible spectroscopy, high-resolution electron microscopy, energy-filtered electron microscopy, and powder X-ray diffraction methods which confirm the core−shell structure.
Resumo:
The gravitational waveform (GWF) generated by inspiralling compact binaries moving in quasi-circular orbits is computed at the third post-Newtonian (3PN) approximation to general relativity. Our motivation is two-fold: (i) to provide accurate templates for the data analysis of gravitational wave inspiral signals in laser interferometric detectors; (ii) to provide the associated spin-weighted spherical harmonic decomposition to facilitate comparison and match of the high post-Newtonian prediction for the inspiral waveform to the numerically-generated waveforms for the merger and ringdown. This extension of the GWF by half a PN order (with respect to previous work at 2.5PN order) is based on the algorithm of the multipolar post-Minkowskian formalism, and mandates the computation of the relations between the radiative, canonical and source multipole moments for general sources at 3PN order. We also obtain the 3PN extension of the source multipole moments in the case of compact binaries, and compute the contributions of hereditary terms (tails, tails-of-tails and memory integrals) up to 3PN order. The end results are given for both the complete plus and cross polarizations and the separate spin-weighted spherical harmonic modes.
Resumo:
We carry out systematic and high-resolution studies of dynamo action in a shell model for magnetohydro-dynamic (MHD) turbulence over wide ranges of the magnetic Prandtl number Pr-M and the magnetic Reynolds number Re-M. Our study suggests that it is natural to think of dynamo onset as a nonequilibrium first-order phase transition between two different turbulent, but statistically steady, states. The ratio of the magnetic and kinetic energies is a convenient order parameter for this transition. By using this order parameter, we obtain the stability diagram (or nonequilibrium phase diagram) for dynamo formation in our MHD shell model in the (Pr-M(-1), Re-M) plane. The dynamo boundary, which separates dynamo and no-dynamo regions, appears to have a fractal character. We obtain a hysteretic behavior of the order parameter across this boundary and suggestions of nucleation-type phenomena.