25 resultados para SMA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In literature we find broadly two types of shape memory alloy based motors namely limited rotation motor and unlimited rotation motor. The unlimited rotation type SMA based motor reported in literature uses SMA springs for actuation. An attempt has been made in this paper to develop an unlimited rotation type balanced poly phase motor based on SMA wire in series with a spring in each phase. By isolating SMA actuation and spring action we are able achieve a constant force by the SMA wire through out its range of operation. The Poly phase motor can be used in stepping mode for generating incremental motion and servo mode for generating continuous motion. A method of achieving servo motion by micro stepping is presented. Micro stepping consists of controlling single-phase temperature with a position feedback. The motor has been modeled with a new approach to the SMA wire Hysterysis model. Motor is simulated for different responses and the results are compared with the experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Design and characterization of a new shape memory alloy wire based Poly Phase Motor has been reported in this paper. The motor can be used either in stepping mode or in servo mode of operation. Each phase of the motor consists of an SMA wire with a spring in series. The principle of operation of the poly phase motor is presented. The motor resembles a stepper motor in its functioning though the actuation principles are different and hence has been characterized similar to a stepper motor. The motor can be actuated in either direction with different phase sequencing methods, which are presented in this work. The motor is modelled and simulated and the results of simulations and experiments are presented. The experimental model of the motor is of dimension 150mm square, 20mm thick and uses SMA wire of 0·4mm diameter and 125mm of length in each phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The properties of widely used Ni-Ti-based shape memory alloys (SMAs) are highly sensitive to the underlying microstructure. Hence, controlling the evolution of microstructure during high-temperature deformation becomes important. In this article, the ``processing maps'' approach is utilized to identify the combination of temperature and strain rate for thermomechanical processing of a Ni(42)Ti(50)Cu(8) SMA. Uniaxial compression experiments were conducted in the temperature range of 800-1050 degrees C and at strain rate range of 10(-3) and 10(2) s(-1). Two-dimensional power dissipation efficiency and instability maps have been generated and various deformation mechanisms, which operate in different temperature and strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results show that the safe window for industrial processing of this alloy is in the range of 800-850 degrees C and at 0.1 s(-1), which leads to grain refinement and strain-free grains. Regions of the instability were identified, which result in strained microstructure, which in turn can affect the performance of the SMA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of this paper is on the practical aspects of design, prototyping, and testing of a compact, compliant external pipe-crawling robot that can inspect a closely spaced bundle of pipes in hazardous environments and areas that are inaccessible to humans. The robot consists of two radially deployable compliant ring actuators that are attached to each other along the longitudinal axis of the pipe by a bidirectional linear actuator. The robot imitates the motion of an inchworm. The novel aspect of the compliant ring actuator is a spring-steel compliant mechanism that converts circumferential motion to radial motion of its multiple gripping pads. Circumferential motion to ring actuators is provided by two shape memory alloy (SMA) wires that are guided by insulating rollers. The design of the compliant mechanism is derived from a radially deployable mechanism. A unique feature of the design is that the compliant mechanism provides the necessary kinematic function within the limited annular space around the pipe and serves as the bias spring for the SMA wires. The robot has a control circuit that sequentially activates the SMA wires and the linear actuator; it also controls the crawling speed. The robot has been fabricated, tested, and automated. Its crawling speed is about 45 mm/min, and the weight is about 150 g. It fits within an annular space of a radial span of 15 mm to crawl on a pipe of 60-mm outer diameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate the possibility of accelerated identification of potential compositions for high-temperature shape memory alloys (SMAs) through a combinatorial material synthesis and analysis approach, wherein we employ the combination of diffusion couple and indentation techniques. The former was utilized to generate smooth and compositionally graded inter-diffusion zones (IDZs) in the Ni-Ti-Pd ternary alloy system of varying IDZ thickness, depending on the annealing time at high temperature. The IDZs thus produced were then impressed with an indenter with a spherical tip so as to inscribe a predetermined indentation strain. Subsequent annealing of the indented samples at various elevated temperatures, T-a, ranging between 150 and 550 degrees C allows for partial to full relaxation of the strain imposed due to the shape memory effect. If T-a is above the austenite finish temperature, A(f), the relaxation will be complete. By measuring the depth recovery, which serves as a proxy for the shape recovery characteristic of the SMA, a three-dimensional map in the recovery temperature composition space is constructed. A comparison of the published Af data for different compositions with the Ta data shows good agreement when the depth recovery is between 70% and 80%, indicating that the methodology proposed in this paper can be utilized for the identification of promising compositions. Advantages and further possibilities of this methodology are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wing morphing is one of the emerging methodology towards improving aerodynamic efficiency of flight vehicle structures. In this paper a morphing structural element is designed and studied which has its origin in the well known chiral structures. The new aspect of design and functionality explored in this paper is that the chiral cell is actuated using thermal Shape Memory Alloy (SMA) actuator wires to provide directional motion. Such structure utilizes the potential of different actuations concepts based on actuator embedded in the chiral structure skin. This paper describes a new class of chiral cell structure with integrated SMA wire for actuation. Chiral topological constructs are obtained by considering passive and active load path decoupling and sub-optimal shape changes. Single cell of chiral honeycomb with actuators are analyzed using finite element simulation results and experiments. To this end, a multi-cell plan-form is characterized showing interesting possibilities in structural morphing applications. The applicability of the developed chiral cell to flexible wing skin, variable stiffness based design and controlling longitudinal-to-transverse stiffness ratio are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Debonding of Shape Memory Alloy (SMA) wires in SMA reinforced polymer matrix composites is a complex phenomenon compared to other fabric fiber debonding in similar matrix composites. This paper focuses on experimental study and analytical correlation of stress required for debonding of thermal SMA actuator wire reinforced composites. Fiber pull-out tests are carried out on thermal SMA actuator at parent state to understand the effect of stress induced detwinned martensites. An ASTM standard is followed as benchmark method for fiber pull-out test. Debonding stress is derived with the help of non-local shear-lag theory applied to elasto-plastic interface. Furthermore, experimental investigations are carried out to study the effect of Laser shot peening on SMA surface to improve the interfacial strength. Variation in debonding stress due to length of SMA wire reinforced in epoxy are investigated for non-peened and peened SMA wires. Experimental results of interfacial strength variation due to various L/d ratio for non-peened and peened SMA actuator wires in epoxy matrix are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three novel homologous series of rod-shaped cyanophenyl alkoxy benzoate liquid crystalline compounds with lateral polar fluorine and chlorine substituent were prepared, and chemical structures of novel materials have been characterized by standard spectral technique and elemental analysis. The mesophase characterization was carried out using the combination of polarized optical microscopy and differential scanning calorimetry. All the compounds exhibit wide thermal range of enantiotropic SmA phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interfacial properties of Shape Memory Alloy (SMA) reinforced polymer matrix composites can be enhanced by improving the interfacial bonding. This paper focuses on studying the interfacial stresses developed in the SMA-epoxy interface due to various laser shot penning conditions. Fiber-pull test-setup is designed to understand the role of mechanical bias stress cycling and thermal actuation cycling. Phase transformation is tracked over mechanical and thermal fatigue cycles. A micromechanics based model developed earlier based on shear lag in SMA and energy based consistent homogenization is extended here to incorporate the stress-temperature phase diagram parameters for modeling fatigue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Areca nut consumption has been implicated in the progression of Oral Submucous fibrosis (OSF); an inflammatory precancerous fibrotic condition. Our previous studies have demonstrated the activation of TGF-beta signaling in epithelial cells by areca nut components and also propose a role for epithelial expressed TGF-beta in the pathogenesis of OSF. Although the importance of epithelial cells in the manifestation of OSF has been proposed, the actual effectors are fibroblast cells. However, the role of areca nut and TGF-beta in the context of fibroblast response has not been elucidated. Therefore, to understand their role in the context of fibroblast response in OSF pathogenesis, human gingival fibroblasts (hGF) were treated with areca nut and/or TGF-beta followed by transcriptome profiling. The gene expression profile obtained was compared with the previously published transcriptome profiles of OSF tissues and areca nut treated epithelial cells. The analysis revealed regulation of 4666 and 1214 genes by areca nut and TGF-beta treatment respectively. The expression of 413 genes in hGF cells was potentiated by areca nut and TGF-beta together. Further, the differentially expressed genes of OSF tissues compared to normal tissues overlapped significantly with areca nut and TGF-beta induced genes in epithelial and hGF cells. Several positively enriched pathways were found to be common between OSF tissues and areca nut + TGF-beta treated hGF cells. In concordance, areca nut along with TGF-beta enhanced fibroblast activation as demonstrated by potentiation of alpha SMA, gamma SMA and collagen gel contraction by hGF cells. Furthermore, TGF-beta secreted by areca nut treated epithelial cells influenced fibroblast activation and other genes implicated in fibrosis. These data establish a role for areca nut influenced epithelial cells in OSF progression by activation of fibroblasts and emphasizes the importance of epithelial-mesenchymal interaction in OSF.