27 resultados para Robin Hood
Resumo:
In the Indian Ocean, mid-depth oxygen minimum zones (OMZs) occur in the Arabian Sea and the Bay of Bengal. The lower part of the Arabian-Sea OMZ (ASOMZ; below 400 m) intensifies northward across the basin; in contrast, its upper part (above 400 m) is located in the central/eastern basin, well east of the most productive regions along the western boundary. The Bay-of-Bengal OMZ (BBOMZ), although strong, is weaker than the ASOMZ. To investigate the processes that maintain the Indian-Ocean OMZs, we obtain a suite of solutions to a coupled biological/physical model. Its physical component is a variable-density, 6 1/2-layer model, in which each layer corresponds to a distinct dynamical regime or water-mass type. Its biological component has six compartments: nutrients, phytoplankton, zooplankton, two size classes of detritus, and oxygen. Because the model grid is non-eddy resolving (0.5 degrees), the biological model also includes a parameterization of enhanced mixing based on the eddy kinetic energy derived from satellite observations. To explore further the impact of local processes on OMZs, we also obtain analytic solutions to a one-dimensional, simplified version of the biological model. Our control run is able to simulate basic features of the oxygen, nutrient, and phytoplankton fields throughout the Indian Ocean. The model OMZs result from a balance, or lack thereof, between a sink of oxygen by remineralization and subsurface oxygen sources due primarily to northward spreading of oxygenated water from the Southern Hemisphere, with a contribution from Persian-Gulf water in the northern Arabian Sea. The northward intensification of the lower ASOMZ results mostly from horizontal mixing since advection is weak in its depth range. The eastward shift of the upper ASOMZ is due primarily to enhanced advection and vertical eddy mixing in the western Arabian Sea, which spread oxygenated waters both horizontally and vertically. Advection carries small detritus from the western boundary into the central/eastern Arabian Sea, where it provides an additional source of remineralization that drives the ASOMZ to suboxic levels. The model BBOMZ is weaker than the ASOMZ because the Bay lacks a remote source of detritus from the western boundary. Although detritus has a prominent annual cycle, the model OMZs do not because there is not enough time for significant remineralization to occur.
Resumo:
Transmit antenna selection (AS) has been adopted in contemporary wideband wireless standards such as Long Term Evolution (LTE). We analyze a comprehensive new model for AS that captures several key features about its operation in wideband orthogonal frequency division multiple access (OFDMA) systems. These include the use of channel-aware frequency-domain scheduling (FDS) in conjunction with AS, the hardware constraint that a user must transmit using the same antenna over all its assigned subcarriers, and the scheduling constraint that the subcarriers assigned to a user must be contiguous. The model also captures the novel dual pilot training scheme that is used in LTE, in which a coarse system bandwidth-wide sounding reference signal is used to acquire relatively noisy channel state information (CSI) for AS and FDS, and a dense narrow-band demodulation reference signal is used to acquire accurate CSI for data demodulation. We analyze the symbol error probability when AS is done in conjunction with the channel-unaware, but fair, round-robin scheduling and with channel-aware greedy FDS. Our results quantify how effective joint AS-FDS is in dispersive environments, the interactions between the above features, and the ability of the user to lower SRS power with minimal performance degradation.
Resumo:
Network theory applied to protein structures provides insights into numerous problems of biological relevance. The explosion in structural data available from PDB and simulations establishes a need to introduce a standalone-efficient program that assembles network concepts/parameters under one hood in an automated manner. Herein, we discuss the development/application of an exhaustive, user-friendly, standalone program package named PSN-Ensemble, which can handle structural ensembles generated through molecular dynamics (MD) simulation/NMR studies or from multiple X-ray structures. The novelty in network construction lies in the explicit consideration of side-chain interactions among amino acids. The program evaluates network parameters dealing with topological organization and long-range allosteric communication. The introduction of a flexible weighing scheme in terms of residue pairwise cross-correlation/interaction energy in PSN-Ensemble brings in dynamical/chemical knowledge into the network representation. Also, the results are mapped on a graphical display of the structure, allowing an easy access of network analysis to a general biological community. The potential of PSN-Ensemble toward examining structural ensemble is exemplified using MD trajectories of an ubiquitin-conjugating enzyme (UbcH5b). Furthermore, insights derived from network parameters evaluated using PSN-Ensemble for single-static structures of active/inactive states of 2-adrenergic receptor and the ternary tRNA complexes of tyrosyl tRNA synthetases (from organisms across kingdoms) are discussed. PSN-Ensemble is freely available from http://vishgraph.mbu.iisc.ernet.in/PSN-Ensemble/psn_index.html.
Resumo:
Orthogonal frequency division multiple access (OFDMA) systems exploit multiuser diversity and frequency-selectivity to achieve high spectral efficiencies. However, they require considerable feedback for scheduling and rate adaptation, and are sensitive to feedback delays. We develop a comprehensive analysis of the OFDMA system throughput as a function of the feedback scheme, frequency-domain scheduler, and discrete rate adaptation rule in the presence of feedback delays. We analyze the popular best-n and threshold-based feedback schemes. We show that for both the greedy and round-robin schedulers, the throughput degradation, given a feedback delay, depends primarily on the fraction of feedback reduced by the feedback scheme and not the feedback scheme itself. Even small feedback delays at low vehicular speeds are shown to significantly degrade the throughput. We also show that optimizing the link adaptation thresholds as a function of the feedback delay can effectively counteract the detrimental effect of delays.
Resumo:
The present study combines field and satellite observations to investigate how hydrographical transformations influence phytoplankton size structure in the southern Bay of Bengal during the peak Southwest Monsoon/Summer Monsoon (July-August). The intrusion of the Summer Monsoon Current (SMC) into the Bay of Bengal and associated changes in sea surface chemistry, traceable eastward up to 90 degrees E along 8 degrees N, seems to influence biology of the region significantly. Both in situ and satellite (MODIS) data revealed low surface chlorophyll except in the area influenced by the SMC During the study period, two well-developed cydonic eddies (north) and an anti-cyclonic eddy (south), closely linked to the main eastward flow of the SMC, were sampled. Considering the capping effect of the low-saline surface water that is characteristic of the Bay of Bengal, the impact of the cyclonic eddy, estimated in terms of enhanced nutrients and chlorophyll, was mostly restricted to the subsurface waters (below 20 m depth). Conversely, the anti-cyclonic eddy aided by the SMC was characterized by considerably higher nutrient concentration and chlorophyll in the upper water column (upper 60 m), which was contrary to the general characteristic of such eddies. Albeit smaller phytoplankton predominated the southern Bay of Bengal (60-95% of the total chlorophyll), the contribution of large phytoplankton was double in the regions influenced by the SMC and associated eddies. Multivariate analysis revealed the extent to which SMC-associated eddies spatially influence phytoplankton community structure. The study presents the first direct quantification of the size structure of phytoplankton from the southern Bay of Bengal and demonstrates that the SMC-associated hydrographical ramifications significantly increase the phytoplankton biomass contributed by larger phytoplankton and thereby influence the vertical opal and organic carbon flux in the region. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25ha), all stems 1cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 degrees S-61 degrees N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 degrees C), changes in precipitation (up to +/- 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8g Nm(-2)yr(-1) and 3.1g Sm(-2)yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.
Resumo:
Practical orthogonal frequency division multiplexing (OFDM) systems, such as Long Term Evolution (LTE), exploit multi-user diversity using very limited feedback. The best-m feedback scheme is one such limited feedback scheme, in which users report only the gains of their m best subchannels (SCs) and their indices. While the scheme has been extensively studied and adopted in standards such as LTE, an analysis of its throughput for the practically important case in which the SCs are correlated has received less attention. We derive new closed-form expressions for the throughput when the SC gains of a user are uniformly correlated. We analyze the performance of the greedy but unfair frequency-domain scheduler and the fair round-robin scheduler for the general case in which the users see statistically non-identical SCs. An asymptotic analysis is then developed to gain further insights. The analysis and extensive numerical results bring out how correlation reduces throughput.
Resumo:
The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between similar to 40,000 and similar to 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of similar to 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of similar to 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.
Resumo:
We report on the results of a country-wide survey of people's perceptions of issues relating to the conservation of biodiversity and ecosystems in India. Our survey, mainly conducted online, yielded 572 respondents, mostly among educated, urban and sub-urban citizens interested in ecological and environmental issues. 3160 ``raw'' questions generated by the survey were iteratively processed by a group of ecologists, environmental and conservation scientists to produce the primary result of this study: a summarized list of 152 priority questions for the conservation of India's biodiversity and ecosystems, which range across 17 broad thematic classes. Of these, three thematic classes-''Policy and Governance'', ``Biodiversity and Endangered Species'' and ``Protection and Conservation''-accounted for the largest number of questions. A comparative analysis of the results of this study with those from similar studies in other regions brought out interesting regional differences in the thematic classes of questions that were emphasized and suggest that local context plays a large role in determining emergent themes. We believe that the ready list of priority issues generated by this study can be a useful guiding framework for conservation practitioners, researchers, citizens, policy makers and funders to focus their resources and efforts in India's conservation research, action and funding landscape. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Optimal control of traffic lights at junctions or traffic signal control (TSC) is essential for reducing the average delay experienced by the road users amidst the rapid increase in the usage of vehicles. In this paper, we formulate the TSC problem as a discounted cost Markov decision process (MDP) and apply multi-agent reinforcement learning (MARL) algorithms to obtain dynamic TSC policies. We model each traffic signal junction as an independent agent. An agent decides the signal duration of its phases in a round-robin (RR) manner using multi-agent Q-learning with either is an element of-greedy or UCB 3] based exploration strategies. It updates its Q-factors based on the cost feedback signal received from its neighbouring agents. This feedback signal can be easily constructed and is shown to be effective in minimizing the average delay of the vehicles in the network. We show through simulations over VISSIM that our algorithms perform significantly better than both the standard fixed signal timing (FST) algorithm and the saturation balancing (SAT) algorithm 15] over two real road networks.
Resumo:
In this paper, we design a new dynamic packet scheduling scheme suitable for differentiated service (DiffServ) network. Designed dynamic benefit weighted scheduling (DBWS) uses a dynamic weighted computation scheme loosely based on weighted round robin (WRR) policy. It predicts the weight required by expedited forwarding (EF) service for the current time slot (t) based on two criteria; (i) previous weight allocated to it at time (t-1), and (ii) the average increase in the queue length of EF buffer. This prediction provides smooth bandwidth allocation to all the services by avoiding overbooking of resources for EF service and still providing guaranteed services for it. The performance is analyzed for various scenarios at high, medium and low traffic conditions. The results show that packet loss is minimized, end to end delay is minimized and jitter is reduced and therefore meet quality of service (QoS) requirement of a network.
Resumo:
Mitochondrial DNA (mtDNA) deletions are associated with various mitochondrial disorders. The deletions identified in humans are flanked by short, directly repeated mitochondrial DNA sequences; however, the mechanism of such DNA rearrangements has yet to be elucidated. In contrast to nuclear DNA (nDNA), mtDNA is more exposed to oxidative damage, which may result in double-strand breaks (DSBs). Although DSB repair in nDNA is well studied, repair mechanisms in mitochondria are not characterized. In the present study, we investigate the mechanisms of DSB repair in mitochondria using in vitro and ex vivo assays. Whereas classical NHEJ (C-NHEJ) is undetectable, microhomology-mediated alternative NHEJ efficiently repairs DSBs in mitochondria. Of interest, robust microhomology-mediated end joining (MMEJ) was observed with DNA substrates bearing 5-, 8-, 10-, 13-, 16-, 19-, and 22-nt microhomology. Furthermore, MMEJ efficiency was enhanced with an increase in the length of homology. Western blotting, immunoprecipitation, and protein inhibition assays suggest the involvement of CtIP, FEN1, MRE11, and PARP1 in mitochondrial MMEJ. Knock-down studies, in conjunction with other experiments, demonstrated that DNA ligase III, but not ligase IV or ligase I, is primarily responsible for the final sealing of DSBs during mitochondrial MMEJ. These observations highlight the central role of MMEJ in maintenance of mammalian mitochondrial genome integrity and is likely relevant for deletions observed in many human mitochondrial disorders.