183 resultados para Rhodium dimer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nature of interaction of Rh(III) with DNA was studied using viscometry and ultraviolet, visible and infrared spectroscopy. The rate of interaction was found to be very slow at room temperature taking several days for completion. The time needed to attain equilibrium is dependent on the concentrations of metal ion, higher the concentration shorter the period required for equilibration. Visible spectra of Rh(III) were found to alter considerably in the presence of DNA. An increase in absorbance and a red shift were observed in the ultraviolet spectra of DNA in the presence of Rh(III). The specific viscosity of DNA solution was found to decrease asymptotically with time and concentrations of metal ion. The melting temperature of DNA was found to increase at lower metal ion concentrations, whereas at higher values a decrease was obtained. At still higher metal ion concentrations (Image ) a ‘nonmeltable state’ of DNA was observed. These results seem to indicate that Rh(III) binds both with the phosphate and the bases of the DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of rhodium(III) complexes of certain hydroxyimino-beta-diketones were synthesised and their structures assigned on the basis of elemental analyses and i.r. and1H n.m.r. spectral studies, The complexes exhibit coordination through carbonyl oxygen and nitrogen of the hydroxy-imino groups in the ligands.1H and13C n.m.r. studies show that the ligands exist in the isonitroso form in CDCl3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of inter-subunit interactions in maintaining optimal catalytic activity in triosephosphate isomerase (TIM) has been probed, using the Plasmodium falciparum enzyme as a model. Examination of subunit interface contacts in the crystal structures suggests that residue 75 (Thr, conserved) and residue 13 (Cys, variable) make the largest number of inter-subunit contacts. The mutants Cys13Asp (C13D) and Cys13Glu (C13E) have been constructed and display significant reduction in catalytic activity when compared with wild-type (WT) enzyme (similar to 7.4-fold decrease in k(cat) for the C13D and similar to 3.3-fold for the C13E mutants). Analytical gel filtration demonstrates that the C13D mutant dissociates at concentrations < 1.25 mu M, whereas the WT and the C13E enzymes retain the dimeric structure. The order of stability of the mutants in the presence of chemical denaturants, like urea and guanidium chloride, is WT > Cys13Glu > Cys13Asp. Irreversible thermal precipitation temperatures follow the same order as well. Modeling studies establish that the Cys13Asp mutation is likely to cause a significantly greater structural perturbation than Cys13Glu. Analysis of sequence and structural data for TIMs from diverse sources suggests that residues 13 and 82 form a pair of proximal sites, in which a limited number of residue pairs may be accommodated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactions of [Rh(COD)Cl](2) with the ligand RN(PX(2))(2) (1: R=C6H5; X=OC6H5) give mono- or disubstituted complexes of the type [Rh-2(COD)Cl-2{eta(2)-C6H5N(P(OC6H5)(2))(2)}-] or [RhCl{eta(2)-C6H5N(P(OC6H5)(2))(2)}](2), depending on the reaction conditions. Reaction of 1 with [Rh(CO)(2)Cl](2) gives the symmetric binuclear complex, [Rh(CO)Cl{mu-C6H5N(P(OC6H5)(2))(2)}], whereas the same reaction with 2 (R=CH3; X=OC6H5) leads to the formation of an asymmetric complex of the type [Rh(CO)(mu-CO)Cl{mu-CH3N(P(OC6H5)(2))(2)}] containing both terminal and bridging CO groups. Interestingly the reaction of 3 (R=C6H5, X = OC6H4Br-p) with either [Rh(COD)Cl](2) or [Rh(CO)(2)Cl](2) leads only to the formation of the chlorine bridged binuclear complex, [RhCl{eta(2)-C6H5N(P(OC6H4Br-p)(2))(2)}](2). The structural elucidation of the complexes was carried out by elemental analyses, IR and P-31 NMR spectroscopic data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cys126 is a completely conserved residue in triosephosphate isomerase that is proximal to the active site but has been ascribed no specific role in catalysis. A previous study of the C126S and C126A mutants of yeast TIM reported substantial catalytic activity for the mutant enzymes, leading to the suggestion that this residue is implicated in folding and stability [Gonzalez-Mondragon E et al. (2004) Biochemistry43, 3255–3263]. We re-examined the role of Cys126 with the Plasmodium falciparum enzyme as a model. Five mutants, C126S, C126A, C126V, C126M, and C126T, were characterized. Crystal structures of the 3-phosphoglycolate-bound C126S mutant and the unliganded forms of the C126S and C126A mutants were determined at a resolution of 1.7–2.1 Å. Kinetic studies revealed an approximately five-fold drop in kcat for the C126S and C126A mutants, whereas an approximately 10-fold drop was observed for the other three mutants. At ambient temperature, the wild-type enzyme and all five mutants showed no concentration dependence of activity. At higher temperatures (> 40 °C), the mutants showed a significant concentration dependence, with a dramatic loss in activity below 15 μm. The mutants also had diminished thermal stability at low concentration, as monitored by far-UV CD. These results suggest that Cys126 contributes to the stability of the dimer interface through a network of interactions involving His95, Glu97, and Arg98, which form direct contacts across the dimer interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DatabaseStructural data are available in the Protein Data Bank under the accession numbers 3PVF, 3PY2, and 3PWA. Structured digital abstract Tim binds to Tim by x-ray crystallography (View interaction).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inspired by the exact solution of the Majumdar-Ghosh model, a family of one-dimensional, translationally invariant spin Hamiltonians is constructed. The exchange coupling in these models is antiferromagnetic, and decreases linearly with the separation between the spins. The coupling becomes identically zero beyond a certain distance. It is rigorously proved that the dimer configuration is an exact, superstable ground-state configuration of all the members of the family on a periodic chain. The ground state is twofold degenerate, and there exists an energy gap above the ground state. The Majumdar-Ghosh Hamiltonian with a twofold degenerate dimer ground state is just the first member of the family. The scheme of construction is generalized to two and three dimensions, and illustrated with the help of some concrete examples. The first member in two dimensions is the Shastry-Sutherland model. Many of these models have exponentially degenerate, exact dimer ground states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An enantiospecific synthesis of the angular triquinane system present in the sesquiterpenes cameroonanes and silphiperfolanes has been accomplished, starting from 5-isopropenyl-2-methylcyclopent-1-ene-1-methanol [readily available in three steps from (R)-limonene] employing an intramolecular rhodium carbenoid insertion into the C-H bond of a tertiary methyl group for the construction of the triquinane system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The direct infrared (IR) absorption spectrum of benzene dimer formed in a free-jet expansion was recorded in the 3.3 mu m region for the first time. This has led to the observation of the C H stretching fundamental mode nu(13) (B(1u)), which is both IR and Raman forbidden in the monomer. Moreover, the IR forbidden and Raman allowed nu(7) (E(2g)) mode has been observed as well. These two modes were found to be red-shifted along with the IR allowed nu(20) (E(1u)) mode, as previously reported by Erlekam et al. [Erlekam; Frankowski; Meijer; Gert von Helden J. Chem. Phys. 2006, 124, 171101], using ion-dip spectroscopy, contrary to the blue-shift predicted earlier by theoretical studies. The observation of the nu(13) band indicates that the symmetry is reduced in the dimer, confirming the T-shaped structure observed by Erlekam et al. Our experimental results have not provided any direct evidence for the presence of the parallel displaced geometry, the main objective of the present work, as predicted by theoretical calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enantiospecific total synthesis of silphiperfol-6-ene has been accomplished starting from the readily available monoterpene (R)-limonene, employing a rhodium carbenoid insertion into the CH bond of a tertiary methyl group. A substrate dependent competitive insertion of the rhodium carbenoid in the gamma- and beta-CH bonds to form cyclopentanone and cyclobutanones, respectively, has been described. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and synthesis of an intensely blue rhodium(III) complex 3]+ of a new N,N-donor ligand, 8-(quinolin-8-ylamino)pyrido2,1-c]1,2,4]benzotriazin-11-ium, 2]+, which contains a planar pendant triazinium arm, is described. Structural characterization for 3]+ was carried out by using various spectroscopic techniques and single-crystal X-ray crystallography. The organometallic rhodium(III) compound shows a ligand-based reversible reduction at 0.65 V. The electrochemically reduced compound displays a single-line EPR spectrum that signifies the formation of ligand-based free radicals. Compound 3]+ shows a binding propensity to calf thymus DNA to give a Kapp value of 6.05X105 M1. The parent triazinium salt, pyrido2,1-c]1,2,4]benzotriazin-11-ium 1]+ and the ligand salt 2]+ exhibit photoinduced cleavage of DNA in UV-A light, whereas the reference Rh complex 3]+ photocleaves DNA with red light (647.1 nm). The compounds show photonuclease activities under both aerobic and anaerobic conditions. Mechanistic investigations under aerobic conditions with several inhibitors indicate the formation of hydroxyl radicals by means of a photoredox pathway. Under anaerobic conditions, it is believed that a photoinduced oxidation of DNA mechanism is operative. Compound 3]+ exhibits photocytotoxicity in HeLa cervical cancer cells to give IC50 values of (12+/-0.9) mu M in UV-A light at 365 nm and (31.4+/-1.1) mu M in the dark.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Six new copper metal complexes with formulas Cu(H2O)(2,2'-bpy) (H2L)](2) center dot H4L center dot 4 H2O (1), {Cu(H2O)(2,2'-bpy)-(H3L)}(2)(H2L)]center dot 2H(2)O (2), Cu(H2O)(1,10-phen)(H2L)](2)center dot 6H(2)O (3), Cu(2,2'-bpy)(H2L)](n)center dot nH(2)O (4), Cu(1,10-phen)(H2L)](n)center dot 3nH(2)O (5), and {Cu(2,2'-bpy)(MoO3)}(2)(L)](n)center dot 2nH(2)O (6) have been synthesized starting from p-xylylenediphosphonic acid (H4L) and 2,2'-bipyridine (2,2'-bpy) or 1,10-phenanthroline (1,10-phen) as secondary linkers and characterized by single crystal X-ray diffraction analysis, IR spectroscopy, and thermogravimetric (TG) analysis. All the complexes were synthesized by hydrothermal methods. A dinuclear motif (Cu-dimer) bridged by phosphonic acid represents a new class of simple building unit (SBU) in the construction of coordination architectures in metal phosphonate chemistry. The initial pH of the reaction mixture induced by the secondary linker plays an important role in the formation of the molecular phosphonates 1, 2, and 3. Temperature dependent hydrothermal synthesis of the compounds 1, 2, and 3 reveals the mechanism of the self assembly of the compounds based on the solubility of the phosphonic acid H4L. Two-dimensional coordination polymers 4, 5, and 6, which are formed by increasing the pH of the reaction mixture, comprise Cu-dimers as nodes, organic (H2L) and inorganic (Mo4O12) ligands as linkers. The void space-areas, created by the (4,4) connected nets in compounds 4 and 5, are occupied by lattice water molecules. Thus compounds 4 and 5 have the potential to accommodate guest species/molecules. Variable temperature magnetic studies of the compounds 3, 4, 5, and 6 reveal the antiferromagnetic interactions between the two Cu(II) ions in the eight membered ring, observed in their crystal structures. A density functional theory (DFT) calculation correlates the conformation of the Cu-dimer ring with the magnitude of the exchange parameter based on the torsion angle of the conformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Establishing the relative orientation of the two benzene molecules in the dimer has remained an enigmatic challenge. Consensus has narrowed the choice of structures to either a T-shape, that may be tilted, or a parallel displaced arrangement, but the relatively small energy differences makes identifying the global minimum difficult. Here we report an ab initio Car-Parrinello Molecular Dynamics based metadynamics computation of the free-energy landscape of the benzene dimer. Our calculations show that although competing structures may be isoenergetic, free energy always favors a tilted T-shape geometry at all temperatures where the bound benzene dimer exist. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a solid-state electrochemical technique, thermodynamic properties of three sulfide phases (RhS0.882, Rh3S4, Rh2S3) in the binary system (Rh + S) are measured as a function of temperature over the range from (925 to 1275) K. Single crystal CaF2 is used as the electrolyte. The auxiliary electrode consisting of (CaS + CaF2) is designed in such a way that the sulfur chemical potential converts into an equivalent fluorine potential at each electrode. The sulfur potentials at the measuring electrodes are established by the mixtures of (Rh + RhS0.882), (RhS0.882 + Rh3S4) and (Rh3S4 + Rh2S3) respectively. A gas mixture (H-2 + H2S + Ar) of known composition fixes the sulfur potential at the reference electrode. A novel cell design with physical separation of rhodium sulfides in the measuring electrode from CaS in the auxiliary electrode is used to prevent interaction between the two sulfide phases. They equilibrate only via the gas phase in a hermetically sealed reference enclosure. Standard Gibbs energy changes for the following reactions are calculated from the electromotive force of three cells: 2.2667Rh (s) + S-2 (g) -> 2.2667RhS(0.882) (s), Delta(r)G degrees +/- 2330/(J . mol(-1)) = -288690 + 146.18 (T/K), 4.44RhS(0.882) (s) + S-2 (g) -> 1.48Rh(3)S(4) (s), Delta(r)G degrees +/- 2245/(J . mol(-1)) = -245596 + 164.31 (T/K), 4Rh(3)S(4) (s) + S-2 (g) -> 6Rh(2)S(3) (s), Delta(r)G degrees +/- 2490/(J . mol(-1)) = -230957 + 160: 03 (T/K). Standard entropy and enthalpy of formation of rhodium sulfides from elements in their normal standard states at T = 298.15 K are evaluated. (C) 2013 Elsevier Ltd. All rights reserved.