66 resultados para Republican powers
Resumo:
The mechanism by which outflows and plausible jets are driven from black hole systems still remains observationally elusive. This notwithstanding, several observational evidences and deeper theoretical insights reveal that accretion and outflow/jet are strongly correlated. We model an advective disk-outflow coupled dynamics, incorporating explicitly the vertical flux. Inter-connecting dynamics of outflow andaccretion essentially upholds the conservation laws. We investigate the properties of the disk-outflow surface and its strong dependence on the rotation parameter of the black hole. The energetics of the disk outflow strongly depend on the mass, accretion rate, and spin of the black holes. The model clearly shows that the outflow power extracted from the disk increases strongly with the spin of the black hole, inferring that the power of the observed astrophysical jets has a proportional correspondence with the spin of the central object. In the case of blazars (BL Lacs and flat spectrum radio quasars, FSRQs), most of their emission are believed to be originated from their jets. It is observed that BL Lacs are relatively low luminous than FSRQs. The luminosity might be linked to the power of the jet, which in turn reflects that the nuclear regions of the BL Lac objects have a relatively low spinning black hole compared to that in the case of FSRQs. If extreme gravity is the source that powers strong outflows and jets, then the spin of the black hole, perhaps, might be the fundamental parameter to account for the observed astrophysical processes in an accretion powered system.
Resumo:
The stability of scheduled multiaccess communication with random coding and independent decoding of messages is investigated. The number of messages that may be scheduled for simultaneous transmission is limited to a given maximum value, and the channels from transmitters to receiver are quasistatic, flat, and have independent fades. Requests for message transmissions are assumed to arrive according to an i.i.d. arrival process. Then, we show the following: (1) in the limit of large message alphabet size, the stability region has an interference limited information-theoretic capacity interpretation, (2) state-independent scheduling policies achieve this asymptotic stability region, and (3) in the asymptotic limit corresponding to immediate access, the stability region for non-idling scheduling policies is shown to be identical irrespective of received signal powers.
Resumo:
The flow of an incompressible non-Newtonian viscous fluid contained between two torsionally oscillating infinite parallel discs is investigated. The two specific cases studied are (i) one disc only oscillates while the other is at rest and (ii) both discs oscillate with the same frequency and amplitude but in opposite directions. Assuming that the amplitude of oscillation,Ω/n, is small and neglecting the squares and higher powers ofΩ/n, the equations of motion have been solved exactly for velocity and pressure satisfying all the boundary conditions. The effect of both positive and negative coefficients of cross-viscosity on the steady components of the flow has been represented graphically.
Resumo:
In order to study the elastic behaviour of matter when subjected to very large pressures, such as occur for example in the interior of the earth, and to provide an explanation for phenomena like earthquakes, it is essential to be able to calculate the values of the elastic constants of a substance under a state of large initial stress in terms of the elastic constants of a natural or stress-free state. An attempt has been made in this paper to derive expressions for these quantities for a substance of cubic symmetry on the basis of non-linear theory of elasticity and including up to cubic powers of the strain components in the strain energy function. A simple method of deriving them directly from the energy function itself has been indicated for any general case and the same has been applied to the case of hydrostatic compression. The notion of an effective elastic energy-the energy require to effect an infinitesimal deformation over a state of finite strain-has been introduced, the coefficients in this expression being the effective elastic constants. A separation of this effective energy function into normal co-ordinates has been given for the particular case of cubic symmetry and it has been pointed out, that when any of such coefficients in this normal form becomes negative, elastic instability will set in, with associated release of energy.
Resumo:
The ion energy distribution of inductively coupled plasma ion source for focused ion beam application is measured using a four grid retarding field energy analyzer. Without using any Faraday shield, ion energy spread is found to be 50 eV or more. Moreover, the ion energy distribution is found to have double peaks showing that the power coupling to the plasma is not purely inductive, but a strong parasitic capacitive coupling is also present. By optimizing the various source parameters and Faraday shield, ion energy distribution having a single peak, well separated from zero energy and with ion energy spread of 4 eV is achieved. A novel plasma chamber, with proper Faraday shield is designed to ignite the plasma at low RF powers which otherwise would require 300-400 W of RF power. Optimization of various parameters of the ion source to achieve ions with very low energy spread and the experimental results are presented in this article. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We have discussed here the flow of a dilute suspension of rigid particles in Newtonian fluid in slowly varying tubes characterized by a small parameter ε. Solutions are presented in the form of asymptotic expansions in powers of ε. The effect of the suspension on the fluid is described by two parameters β and γ which depend on the volume fraction of the particles which we assume to be small. It is found that the presence of the particles accelerate the process of eddy formation near the constriction and shifts the point of separation.
Resumo:
An experimental setup using radiative heating has been used to understand the thermo-physical phenomena and chemical transformations inside acoustically levitated cerium nitrate precursor droplets. In this transformation process, through infrared thermography and high speed imaging, events such as vaporization, precipitation and chemical reaction have been recorded at high temporal resolution, leading to nanoceria formation with a porous morphology. The cerium nitrate droplet undergoes phase and shape changes throughout the vaporization process. Four distinct stages were delineated during the entire vaporization process namely pure evaporation, evaporation with precipitate formation, chemical reaction with phase change and formation of final porous precipitate. The composition was examined using scanning and transmission electron microscopy that revealed nanostructures and confirmed highly porous morphology with trapped gas pockets. Transmission electron microscopy (TEM) and high speed imaging of the final precipitate revealed the presence of trapped gases in the form of bubbles. TEM also showed the presence of nanoceria crystalline structures at 70 degrees C. The current study also looked into the effect of different heating powers on the process. At higher power, each phase is sustained for smaller duration and higher maximum temperature. In addition, the porosity of the final precipitate increased with power. A non-dimensional time scale is proposed to correlate the effect of laser intensity and vaporization rate of the solvent (water). The effect of acoustic levitation was also studied. Due to acoustic streaming, the solute selectively gets transported to the bottom portion of the droplet due to strong circulation, providing it rigidity and allows it become bowl shaped. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Here we rederive the hierarchy of equations for the evolution of distribution functions of various orders using a convenient parameterization. We use this to obtain equations for two- and three-point correlation functions in powers of a small parameter, viz., the initial density contrast. The correspondence of the lowest order solutions of these equations to the results from the linear theory of density perturbations is shown for an OMEGA = 1 universe. These equations are then used to calculate, to the lowest order, the induced three-point correlation function that arises from Gaussian initial conditions in an OMEGA = 1 universe. We obtain an expression which explicitly exhibits the spatial structure of the induced three-point correlation function. It is seen that the spatial structure of this quantity is independent of the value of OMEGA. We also calculate the triplet momentum. We find that the induced three-point correlation function does not have the ''hierarchical'' form often assumed. We discuss possibilities of using the induced three-point correlation to interpret observational data. The formalism developed here can also be used to test a validity of different schemes to close the
Resumo:
Fine powders of semiconductor oxides have been widely used as photocatalysts for many reactions. Among the various photocatalytic reactions, water splitting has been given much importance, since it is a promising chemical route for solar energy conversion. Perovskite oxides, in particular SrTiO, have been commonly used as photocatalysts because some of them can decompose H,O into H, and 0, without an external bias potential (1). In turn, this is because the conduction band (CB) edges of some of the perovskite oxides are more negative than the H+/H, energy level. Since the catalytic activity is related to the surface properties of the solids, fine powders rather than single crystals are used. Photocatalysis on fine powers can be conveniently discussed in three parts, viz. preparation, characterization and their catalytic activity. Presently, photo-decomposition of water using SrTiO, fine powders is discussed in greater detail, although other photocatalytic reactions on various perovskite oxides are also briefly dealt with.
Resumo:
The photochromic, electrochromic and x-ray irradiation damages (commonly called the gray tracks) produced in KTiOPO4 single crystals have been studied using photoluminescence (PL) spectroscopy. Gray tracks were produced in this material by exposure to high laser powers (similar to MW/cm(2)), application of electric fields (similar to kV), and exposure to x rays (30 kV). The PL spectra recorded for such gray tracked samples at 4.2 K, exhibited a luminescence band in the 1-1.8 eV range with a peak at 1.41 eV. Temperature and excitation intensity dependence of PL peaks were carried out to probe the exact nature of the broad emission band in the gray tracked samples. The observed photoluminescence is attributed to transitions in the Ti3+ levels, created on irradiation. The microscopic effects produced in the crystal by electric field, optical field, and x rays are similar, as can be concluded from the similarity of PL spectra as well as their intensity and temperature dependences. (C) 1999 American Institute of Physics. [S0021-8979(99)04512-0].
Resumo:
The growth and dissolution dynamics of nonequilibrium crystal size distributions (CSDs) can be determined by solving the governing population balance equations (PBEs) representing reversible addition or dissociation. New PBEs are considered that intrinsically incorporate growth dispersion and yield complete CSDs. We present two approaches to solving the PBEs, a moment method and a numerical scheme. The results of the numerical scheme agree with the moment technique, which can be solved exactly when powers on mass-dependent growth and dissolution rate coefficients are either zero or one. The numerical scheme is more general and can be applied when the powers of the rate coefficients are non-integers or greater than unity. The influence of the size dependent rates on the time variation of the CSDs indicates that as equilibrium is approached, the CSDs become narrow when the exponent on the growth rate is less than the exponent on the dissolution rate. If the exponent on the growth rate is greater than the exponent on the dissolution rate, then the polydispersity continues to broaden. The computation method applies for crystals large enough that interfacial stability issues, such as ripening, can be neglected. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Experimental investigations into the effect of temperature on conversion of NO in the presence of hydrocarbons (ethylene, acetylene and n-hexane) are presented. An AC energized dielectric barrier discharge reactor was used as the plasma reactor. The experiments were carried out at different temperatures up to 200 degreesC. The discharge powers were measured at all the temperatures. The discharge power was found to increase with temperature. NO conversion in the presence of ethylene and n-hexane was better than that of acetylene at all temperatures. The addition of acetylene at room temperature showed no better conversion of NO compared to no additive case. While at higher temperatures, it could enhance the conversion of NO. A slight enhancement in NO and NOx removal was observed in the presence of water vapor. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
In many wireless applications, it is highly desirable to have a fast mechanism to resolve or select the packet from the user with the highest priority. Furthermore, individual priorities are often known only locally at the users. In this paper we introduce an extremely fast, local-information-based multiple access algorithm that selects the best node in 1.8 to 2.1 slots,which is much lower than the 2.43 slot average achieved by the best algorithm known to date. The algorithm, which we call Variable Power Multiple Access Selection (VP-MAS), uses the local channel state information from the accessing nodes to the receiver, and maps the priorities into the receive power.It is inherently distributed and scales well with the number of users. We show that mapping onto a discrete set of receive power levels is optimal, and provide a complete characterization for it. The power levels are chosen to exploit packet capture that inherently occurs in a wireless physical layer. The VP-MAS algorithm adjusts the expected number of users that contend in each step and their respective transmission powers, depending on whether previous transmission attempts resulted in capture,idle channel, or collision.
Resumo:
A system of transport equations have been obtained for plasma of electrons and having a background of positive ions in the presence of an electric and magnetic field. The starting kinetic equation is the well-known Landau kinetic equation. The distribution function of the kinetic equation has been expanded in powers of generalized Hermite polynomials and following Grad, a consistent set of transport equations have been obtained. The expressions for viscosity and heat conductivity have been deduced from the transport equation.
Resumo:
This paper obtains a new accurate model for sensitivity in power systems and uses it in conjunction with linear programming for the solution of load-shedding problems with a minimum loss of loads. For cases where the error in the sensitivity model increases, other linear programming and quadratic programming models have been developed, assuming currents at load buses as variables and not load powers. A weighted error criterion has been used to take priority schedule into account; it can be either a linear or a quadratic function of the errors, and depending upon the function appropriate programming techniques are to be employed.