51 resultados para Regular Averaging Operators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For an operator T in the class B-n(), introduced by Cowen and Douglas, the simultaneous unitary equivalence class of the curvature and the covariant derivatives up to a certain order of the corresponding bundle E-T determine the unitary equivalence class of the operator T. In a subsequent paper, the authors ask if the simultaneous unitary equivalence class of the curvature and these covariant derivatives are necessary to determine the unitary equivalence class of the operator T is an element of B-n(). Here we show that some of the covariant derivatives are necessary. Our examples consist of homogeneous operators in B-n(). For homogeneous operators, the simultaneous unitary equivalence class of the curvature and all its covariant derivatives at any point w in the unit disc are determined from the simultaneous unitary equivalence class at 0. This shows that it is enough to calculate all the invariants and compare them at just one point, say 0. These calculations are then carried out in number of examples. One of our main results is that the curvature along with its covariant derivative of order (0, 1) at 0 determines the equivalence class of generic homogeneous Hermitian holomorphic vector bundles over the unit disc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When E. coli single-stranded DNA binding protein (SSB) coats single-stranded DNA (ssDNA) in the presence of 1 mM MgCl2 it inhibits the subsequent binding of recA protein, whereas SSB binding to ssDNA in 12 mM MgCl2 promotes the binding of recA protein. These two conditions correspond respectively to those which produce 'smooth' and 'beaded' forms of ssDNA-SSB filaments. By gel filtration and immunoprecipitation we observed active nucleoprotein filaments of recA protein and SSB on ssDNA that contained on average 1 monomer of recA protein per 4 nucleotides and 1 monomer of SSB per 20-22 nucleotides. Filaments in such a mixture, when digested with micrococcal nuclease produced a regular repeating pattern, approximately every 70-80 nucleotides, that differed from the pattern observed when only recA protein was bound to the ssDNA. We conclude that the beaded ssDNA-SSB nucleoprotein filament readily binds recA protein and forms an intermediate that is active in the formation of joint molecules and can retain substantially all of the SSB that was originally bound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We set up Wigner distributions for N-state quantum systems following a Dirac-inspired approach. In contrast to much of the work in this study, requiring a 2N x 2N phase space, particularly when N is even, our approach is uniformly based on an N x N phase-space grid and thereby avoids the necessity of having to invoke a `quadrupled' phase space and hence the attendant redundance. Both N odd and even cases are analysed in detail and it is found that there are striking differences between the two. While the N odd case permits full implementation of the marginal property, the even case does so only in a restricted sense. This has the consequence that in the even case one is led to several equally good definitions of the Wigner distributions as opposed to the odd case where the choice turns out to be unique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Suclakov and Zaks (and earlier by Fiamcik) that a'(G) <= Delta+2, where Delta = Delta(G) denotes the maximum degree of the graph. Alon et al. also raised the question whether the complete graphs of even order are the only regular graphs which require Delta+2 colors to be acyclically edge colored. In this article, using a simple counting argument we observe not only that this is not true, but in fact all d-regular graphs with 2n vertices and d>n, requires at least d+2 colors. We also show that a'(K-n,K-n) >= n+2, when n is odd using a more non-trivial argument. (Here K-n,K-n denotes the complete bipartite graph with n vertices on each side.) This lower bound for Kn,n can be shown to be tight for some families of complete bipartite graphs and for small values of n. We also infer that for every d, n such that d >= 5, n >= 2d+3 and dn even, there exist d-regular graphs which require at least d+2-colors to be acyclically edge colored. (C) 2009 Wiley Periodicals, Inc. J Graph Theory 63: 226-230, 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove the spectral invariance of SG pseudo-differential operators on L-P(R-n), 1 < p < infinity, by using the equivalence of ellipticity and Fredholmness of SG pseudo-differential operators on L-p(R-n), 1 < p < infinity. A key ingredient in the proof is the spectral invariance of SC pseudo-differential operators on L-2(R-n).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of expressing a general dynamical variable in quantum mechanics as a function of a primitive set of operators is studied from several points of view. In the context of the Heisenberg commutation relation, the Weyl representation for operators and a new Fourier-Mellin representation are related to the Heisenberg group and the groupSL(2,R) respectively. The description of unitary transformations via generating functions is analysed in detail. The relation between functions and ordered functions of noncommuting operators is discussed, and results closely paralleling classical results are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An explicit construction of all the homogeneous holomorphic Hermitian vector bundles over the unit disc D is given. It is shown that every such vector bundle is a direct sum of irreducible ones. Among these irreducible homogeneous holomorphic Hermitian vector bundles over D, the ones corresponding to operators in the Cowen-Douglas class B-n(D) are identified. The classification of homogeneous operators in B-n(D) is completed using an explicit realization of these operators. We also show how the homogeneous operators in B-n(D) split into similarity classes. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results for one-loop matching coefficients between continuum four-fermion operators, defined in the Naive Dimensional Regularization scheme, and staggered fermion operators of various types. We calculate diagrams involving gluon exchange between quark fines, and ''penguin'' diagrams containing quark loops. For the former we use Landau-gauge operators, with and without O(a) improvement, and including the tadpole improvement suggested by Lepage and Mackenzie. For the latter we use gauge-invariant operators. Combined with existing results for two-loop anomalous dimension matrices and one-loop matching coefficients, our results allow a lattice calculation of the amplitudes for KKBAR mixing and K --> pipi decays with all corrections of O(g2) included. We also discuss the mixing of DELTAS = 1 operators with lower dimension operators, and show that, with staggered fermions, only a single lower dimension operator need be removed by non-perturbative subtraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the boundedness of Toeplitz operators on Segal-Bargmann spaces in various contexts. Using Gutzmer's formula as the main tool we identify symbols for which the Toeplitz operators correspond to Fourier multipliers on the underlying groups. The spaces considered include Fock spaces, Hermite and twisted Bergman spaces and Segal-Bargmann spaces associated to Riemannian symmetric spaces of compact type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce the inverse of the Hermitian operator (acircacirc†) and express the Boson inverse operators acirc-1 and acirc†-1 in terms of the operators acirc, acirc† and (acircacirc†)-1. We show that these Boson inverse operators may be realized by Susskind-Glogower phase operators. In this way, we find a new two-photon annihilation operator and denote it as acirc2(acircacirc†)-1. We show that the eigenstates of this operator have interesting non-classical properties. We find that the eigenstates of the operators (acircacirc†)-1 acirc2, acirc(acircacirc†)-1 acirc and acirc2(acircacirc†)-1 have many similar properties and thus they constitute a family of two-photon annihilation operators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report crystal magnetic susceptibility results of two S = 1/2 one-dimensional Heisenberg antiferromagnets, KFeS2 and CsFeS2. Both compounds consist of (FeS4)(n) chains with an average Fe-Fe distance of 2.7 Angstrom. In KFeS2, all intrachain Fe-Fe distances are identical. Its magnetic susceptibility is typical of a regular antiferromagnetic chain with spin-spin exchange parameter J = -440.7 K. In CsFeS2, however, the Fe-Fe distances alternate between 2.61 and 2.82 Angstrom. This is reflected in its magnetic susceptibility, which could be fitted with J = -640 K, and the degree of alternation, alpha = 0.3. These compounds form a unique pair, and allow for a convenient experimental comparison of the magnetic properties of regular versus alternating Heisenberg chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-grain synchronous dataflow graphs or multi-rate graphs have the distinct feature that the nodes of the dataflow graph fire at different rates. Such multi-rate large-grain dataflow graphs have been widely regarded as a powerful programming model for DSP applications. In this paper we propose a method to minimize buffer storage requirement in constructing rate-optimal compile-time (MBRO) schedules for multi-rate dataflow graphs. We demonstrate that the constraints to minimize buffer storage while executing at the optimal computation rate (i.e. the maximum possible computation rate without storage constraints) can be formulated as a unified linear programming problem in our framework. A novel feature of our method is that in constructing the rate-optimal schedule, it directly minimizes the memory requirement by choosing the schedule time of nodes appropriately. Lastly, a new circular-arc interval graph coloring algorithm has been proposed to further reduce the memory requirement by allowing buffer sharing among the arcs of the multi-rate dataflow graph. We have constructed an experimental testbed which implements our MBRO scheduling algorithm as well as (i) the widely used periodic admissible parallel schedules (also known as block schedules) proposed by Lee and Messerschmitt (IEEE Transactions on Computers, vol. 36, no. 1, 1987, pp. 24-35), (ii) the optimal scheduling buffer allocation (OSBA) algorithm of Ning and Gao (Conference Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Charleston, SC, Jan. 10-13, 1993, pp. 29-42), and (iii) the multi-rate software pipelining (MRSP) algorithm (Govindarajan and Gao, in Proceedings of the 1993 International Conference on Application Specific Array Processors, Venice, Italy, Oct. 25-27, 1993, pp. 77-88). Schedules generated for a number of random dataflow graphs and for a set of DSP application programs using the different scheduling methods are compared. The experimental results have demonstrated a significant improvement (10-20%) in buffer requirements for the MBRO schedules compared to the schedules generated by the other three methods, without sacrificing the computation rate. The MBRO method also gives a 20% average improvement in computation rate compared to Lee's Block scheduling method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limiting solutions are derived for the flexure of simply supported many-sided regular polygons, as the number of sides is increased indefinitely. It is shown that these solutions are different from those for simply supported circular plates. For axisymmetric loading, circular plate solutions overestimate the deflexions and the moments by significant factors.