182 resultados para Regimes previdenciários
Resumo:
Power dissipation maps have been generated in the temperature range of 900 degrees C to 1150 degrees C and strain rate range of 10(-3) to 10 s(-1) for a cast aluminide alloy Ti-24Al-20Nb using dynamic material model. The results define two distinct regimes of temperature and strain rate in which efficiency of power dissipation is maximum. The first region, centered around 975 degrees C/0.1 s(-1), is shown to correspond to dynamic recrystallization of the alpha(2) phase and the second, centered around 1150 degrees C/0.001 s(-1), corresponds to dynamic recovery and superplastic deformation of the beta phase. Thermal activation analysis using the power law creep equation yielded apparent activation energies of 854 and 627 kJ/mol for the first and second regimes, respectively. Reanalyzing the data by alternate methods yielded activation energies in the range of 170 to 220 kJ/mol and 220 to 270 kJ/mol for the first and second regimes, respectively. Cross slip was shown to constitute the activation barrier in both cases. Two distinct regimes of processing instability-one at high strain rates and the other at the low strain rates in the lower temperature regions-have been identified, within which shear bands are formed.
Resumo:
A computational study for the convergence acceleration of Euler and Navier-Stokes computations with upwind schemes has been conducted in a unified framework. It involves the flux-vector splitting algorithms due to Steger-Warming and Van Leer, the flux-difference splitting algorithms due to Roe and Osher and the hybrid algorithms, AUSM (Advection Upstream Splitting Method) and HUS (Hybrid Upwind Splitting). Implicit time integration with line Gauss-Seidel relaxation and multigrid are among the procedures which have been systematically investigated on an individual as well as cumulative basis. The upwind schemes have been tested in various implicit-explicit operator combinations such that the optimal among them can be determined based on extensive computations for two-dimensional flows in subsonic, transonic, supersonic and hypersonic flow regimes. In this study, the performance of these implicit time-integration procedures has been systematically compared with those corresponding to a multigrid accelerated explicit Runge-Kutta method. It has been demonstrated that a multigrid method employed in conjunction with an implicit time-integration scheme yields distinctly superior convergence as compared to those associated with either of the acceleration procedures provided that effective smoothers, which have been identified in this investigation, are prescribed in the implicit operator.
Resumo:
The composition-controlled metal-insulator transition in the perovskite systems LaNi1-xMxO3 (M = Cr, Mn, Fe, and Co) has been investigated by transport measurements over the temperature range 12-300 K. These systems, which have critical electron densities (nc) in the range (1-2) -1020 electrons cm-3, exhibit sharp metal-insulator transitions at the base temperature. The corresponding minimum metallic conductivity (Ï-min), separating the localized and itinerant electronic regimes, is of the order of 102 ohm-1 cm-1. Particular attention is paid to the idea of Ï-min scaling with nc, and our present results are compared with earlier studies of the metal-insulator transition in low (e.g., Ge:Sb) and high (e.g., metal-ammonia, supercritical Hg) electron-density systems. A link is established between the transport and magnetic properties of the title systems at the metal-insulator transition.
Resumo:
Al-5 wt pct Si alloy is processed by upset forging in the temperature range 300 K to 800 K and in the strain rate range 0.02 to 200 s−1. The hardness and tensile properties of the product have been studied. A “safe” window in the strain rate-temperature field has been identified for processing of this alloy to obtain maximum tensile ductility in the product. For the above strain rate range, the temperature range of processing is 550 K to 700 K for obtaining high ductility in the product. On the basis of microstructure and the ductility of the product, the temperature-strain rate regimes of damage due to cavity formation at particles and wedge cracking have been isolated for this alloy. The tensile fracture features recorded on the product specimens are in conformity with the above damage mechanisms. A high temperature treatment above ≈600 K followed by fairly fast cooling gives solid solution strengthening in the alloy at room temperature.
Resumo:
Elastic properties of lead phosphomolybdate [PbO-1bMoO3-1bP2O5] glasses have been investigated using ultrasonic velocity measurements at 10MHz. The composition dependence of elastic moduli, Poisson's ratio and the Debye temperature are found to be consistent with a structural model proposed earlier. According to this model lead acts both as a network former and as a network modifier in different composition regimes. It is suggested that the incorporation of lead into the network is accompanied by the conversion of three-connected [Image ] tetrahedra into four-connected Image tetrahedra in the network. lead; phosphorus; molybdenum
Resumo:
The plastic response of a segment of a simply supported orthotropic spherical shell under a uniform blast loading applied on the convex surface of the shell is presented. The blast is assumed to impart a uniform velocity to the shell surface initially. The material of the shell is orthotropic obeying a modified Tresca yield hypersurface conditions and the associated flow rules. The deformation of the shell is determined during all phases of its motion by considering the motion of plastic hinges in different regimes of flow. Numerical results presented include the permanent deformed configuration of the shell and the total time of shell response for different degrees of orthotropy. Conclusions regarding the plastic behaviour of spherical shells with circumferential and meridional stiffening under uniform blast load are presented.
Resumo:
A mechanics based linear analysis of the problem of dynamic instabilities in slender space launch vehicles is undertaken. The flexible body dynamics of the moving vehicle is studied in an inertial frame of reference, including velocity induced curvature effects, which have not been considered so far in the published literature. Coupling among the rigid-body modes, the longitudinal vibrational modes and the transverse vibrational modes due to asymmetric lifting-body cross-section are considered. The model also incorporates the effects of aerodynamic forces and the propulsive thrust of the vehicle. The effects of the coupling between the combustion process (mass variation, developed thrust etc.) and the variables involved in the flexible body dynamics (displacements and velocities) are clearly brought out. The model is one-dimensional, and it can be employed to idealised slender vehicles with complex shapes. Computer simulations are carried out using a standard eigenvalue problem within h-p finite element modelling framework. Stability regimes for a vehicle subjected to propulsive thrust are validated by comparing the results from published literature. Numerical simulations are carried out for a representative vehicle to determine the instability regimes with vehicle speed and propulsive thrust as the parameters. The phenomena of static instability (divergence) and dynamic instability (flutter) are observed. The results at low Mach number match closely with the results obtained from previous models published in the literature.
Resumo:
Sea-finding behavior in sea turtle hatchlings is modified by the visual cues provided by artificial beach front lighting. The consequent landward movement of hatchlings in response to coastal electric lighting reduces their survival rates. We assessed the potential impact of coastal lighting at Rushikulya, an important mass nesting site of the olive ridley sea turtle (Lepidochelys olivacea) in the Indian Ocean region. We examined the response of hatchlings to light characteristics in an experimental setup, as well as to the existing lighting regimes along the beach, using arena trials. Previous studies on other species indicate preferential orientation towards low wavelength and high intensity light. Our study confirms these preferences among hatchlings from the Indian Ocean population of olive ridleys. In addition we also found that wavelength and intensity could have an interactive effect upon hatchling orientation. Hatchlings at the study site respond both to visible point sources of light and to sheer glows of light. Though beach plantations of introduced Casuarina equisetifolia are generally considered to have negative impacts on sea turtle nesting beaches, we found that they acted as an effective light barrier when planted about 50 m away from the high tide line. We developed a model of the expected impact of artificial lighting on hatchling orientation during mass hatching events of previous years, and predict as much as 50% misorientation in some years. We also developed a map representing the misorientation of hatchlings due to artificial lighting based on arena trials in different regions of the beach. The results of the study helped identify focal areas for light management on the beach, which could be critical for the survival of this population.
Resumo:
Nanoindentation technique was employed to measure the changes in mechanical properties of a glass preform subjected to different levels of UV exposure. The results reveal that short-term exposure leads to an appreciable increase in the Young's modulus (E), suggesting the densification of the glass, confirming the compaction-densification model. However, on prolonged exposure, E decreases, which provides what we believe to be the first direct evidence of dilation in the glass leading into the Type IIA regime. The present results rule out the hypothesis that continued exposure leads to an irreversible compaction and prove that index modulation regimes are intrinsic to the glass matrix.
Resumo:
A generalized isothermal effectiveness factor correlation has been proposed for catalytic reactions whose intrinsic kinetics are based on the redox model. In this correlation which is exact for asymptotic values of the Thiele parameter the effect of the parameters appearing in the model, the order of the reaction and particle geometry are incorporated in a modified form of Thiele parameter. The relationship takes the usual form: Image and predicts effectiveness factor with an error of less than 2% in a range of Thiele parameter that accommodates both the kinetic and diffusion control regimes.
Resumo:
Creeping flow hydrodynamics combined with diffusion boundary layer equation are solved in conjunction with free-surface cell model to obtain a solution of the problem of convective transfer with surface reaction for flow parallel to an array of cylindrical pellets at high Peclet numbers and under fast and intermediate kinetics regimes. Expressions are derived for surface concentration, boundary layer thickness, mass flux and Sherwood number in terms of Damkoehler number, Peclet number and void fraction of the array. The theoretical results are evaluated numerically.
Resumo:
India's energy challenges are multi-pronged. They are manifested through growing demand for modern energy carriers, a fossil fuel dominated energy system facing a severe resource crunch, the need for creating access to quality energy for the large section of deprived population, vulnerable energy security, local and global pollution regimes and the need for sustaining economic development. Renewable energy is considered as one of the most promising alternatives. Recognizing this potential, India has been implementing one of the largest renewable energy programmes in the world. Among the renewable energy technologies. bioenergy has a large diverse portfolio including efficient biomass stoves, biogas, biomass combustion and gasification and process heat and liquid fuels. India has also formulated and implemented a number of innovative policies and programmes to promote bioenergy technologies. However, according to some preliminary studies, the success rate is marginal compared to the potential available. This limited success is a clear indicator of the need for a serious reassessment of the bioenergy programme. Further, a realization of the need for adopting a sustainable energy path to address the above challenges will be the guiding force in this reassessment. In this paper an attempt is made to consider the potential of bioenergy to meet the rural energy needs: (I) biomass combustion and gasification for electricity; (2) biomethanation for cooking energy (gas) and electricity; and (3) efficient wood-burning devices for cooking. The paper focuses on analysing the effectiveness of bioenergy in creating this rural energy access and its sustainability in the long run through assessing: the demand for bioenergy and potential that could be created; technologies, status of commercialization and technology transfer and dissemination in India; economic and environmental performance and impacts: bioenergy policies, regulatory measures and barrier analysis. The whole assessment aims at presenting bioenergy as an integral part of a sustainable energy strategy for India. The results show that bioenergy technology (BET) alternatives compare favourably with the conventional ones. The cost comparisons show that the unit costs of BET alternatives are in the range of 15-187% of the conventional alternatives. The climate change benefits in terms of carbon emission reductions are to the tune of 110 T C per year provided the available potential of BETs are utilized.
Resumo:
We explore the semi-classical structure of the Wigner functions ($\Psi $(q, p)) representing bound energy eigenstates $|\psi \rangle $ for systems with f degrees of freedom. If the classical motion is integrable, the classical limit of $\Psi $ is a delta function on the f-dimensional torus to which classical trajectories corresponding to ($|\psi \rangle $) are confined in the 2f-dimensional phase space. In the semi-classical limit of ($\Psi $ ($\hslash $) small but not zero) the delta function softens to a peak of order ($\hslash ^{-\frac{2}{3}f}$) and the torus develops fringes of a characteristic 'Airy' form. Away from the torus, $\Psi $ can have semi-classical singularities that are not delta functions; these are discussed (in full detail when f = 1) using Thom's theory of catastrophes. Brief consideration is given to problems raised when ($\Psi $) is calculated in a representation based on operators derived from angle coordinates and their conjugate momenta. When the classical motion is non-integrable, the phase space is not filled with tori and existing semi-classical methods fail. We conjecture that (a) For a given value of non-integrability parameter ($\epsilon $), the system passes through three semi-classical regimes as ($\hslash $) diminishes. (b) For states ($|\psi \rangle $) associated with regions in phase space filled with irregular trajectories, ($\Psi $) will be a random function confined near that region of the 'energy shell' explored by these trajectories (this region has more than f dimensions). (c) For ($\epsilon \neq $0, $\hslash $) blurs the infinitely fine classical path structure, in contrast to the integrable case ($\epsilon $ = 0, where $\hslash $ )imposes oscillatory quantum detail on a smooth classical path structure.
Resumo:
We report the observation of persistent photoconductivity (PPC) in flower shaped PbS dendrites grown by the hydrothermal method. Potential fluctuations, due to the presence of various confinement regimes in the branches of dendrites, and surface traps, are likely responsible for the PPC observed here. We also observed photocurrent quenching and decreased dark current in the PPC below 40 K, due to the presence of a metastable state, whereas positive PPC was observed in the temperature region 40-220 K. Dark conductivity measurements, time constant parameters obtained from the stretched exponential fittings of PPC, also showed the metastable state related transition around 50 K.
Resumo:
We investigate the transition of a radiatively inefficient phase of a viscous two temperature accreting flow to a cooling dominated phase and vice versa around black holes. Based on a global sub-Keplerian accretion disk model in steady state, including explicit cooling processes self-consistently, we show that general advective accretion flow passes through various phases during its infall towards a black hole. Bremsstrahlung, synchrotron and inverse Comptonization of soft photons are considered as possible cooling mechanisms. Hence the flow governs a much lower electron temperature similar to 10(8) - 10(9.5) K compared to the hot protons of temperature similar to 10(10.2) - 10(11.8) K in the range of the accretion rate in Eddington units 0.01 less than or simiar to (M) over dot less than or similar to 100. Therefore, the solutions may potentially explain the hard X-rays and the gamma-rays emitted from AGNs and X-ray binaries. We finally compare the solutions for two different regimes of viscosity and conclude that a weakly viscous flow is expected to be cooling dominated compared to its highly viscous counterpart which is radiatively inefficient. The flow is successfully able to reproduce the observed minosities of the under-fed AGNs and quasars (e.g. Sgr A*), ultra-luminous X-ray sources (e.g. SS433), as well as the highly luminous AGNs and ultra-luminous quasars (e.g. PKS 0743-67) at different combinations of the mass accretion rate and ratio of specific heats.