66 resultados para Refraction index
Resumo:
Optically clear glasses of various compositions in the system (100-x)Li2B4O7 center dot x(Ba5Li2Ti2Nb8O30) (5 <= x <= 20, in molar ratio) were fabricated by splat quenching technique. Controlled heat-treatment of the as-quenched glasses at 500 degrees C for 8 h yielded nanocrystallites embedded in the glass matrix. High Resolution Transmission Electron Microscopy (HRTEM) of these samples established the composition of the nano-crystallites to be that of Ba5Li2Ti2Nb8O30. B-11 NMR studies revealed the transformation of BO4 structural units into BO3 units owing to the increase in TiO6 and NbO6 structural units as the composition of Ba5Li2Ti2Nb8O30 increased in the glass. This, in turn, resulted in an increase in the density of the glasses. The influence of the nominal composition of the glasses and glass nanocrystal composites on optical band gap (E-opt), Urbach energy (Delta E), refractive index (n), molar refraction (R-m), optical polarizability (alpha(m)) and third order non-linear optical susceptibility (chi(3)) were studied.
Resumo:
The Witten index can be defined in many supersymmetric theories by formulating them in the space-time R×S3. If the index is nonzero for any value of the radius of S3, it can be shown that the theory does not break supersymmetry in Minkowski space. This approach rules out supersymmetry breaking in a large class of models, chiral and otherwise. The index arguments are consistent with previous instanton calculations which indicate supersymmetry breaking in certain theories.
Resumo:
We have measured the frequency-dependent real index of refraction and extinction coefficient (and hence the complex dielectric function) of a free-standing double-walled carbon nanotube film of thickness 200 nm by using terahertz time domain spectroscopy in the frequency range 0.1 to 2.5 THz. The real index of refraction and extinction coefficient have very high values of approximately 52 and 35, respectively, at 0.1 THz, which decrease at higher frequencies. Two low-frequency phonon modes of the carbon nanotubes at 0.45 and 0.75 THz were clearly observed for the first time in the real and imaginary parts of the complex dielectric function along with a broad resonance centred at around 1.45 THz, the latter being similar to that in single-walled carbon nanotubes assigned to electronic excitations. Our experiments bring out a possible application of double-walled carbon nanotube films as a neutral density filter in the THz range.
Resumo:
Effective usage of image guidance by incorporating the refractive index (RI) variation in computational modeling of light propagation in tissue is investigated to assess its impact on optical-property estimation. With the aid of realistic patient breast three-dimensional models, the variation in RI for different regions of tissue under investigation is shown to influence the estimation of optical properties in image-guided diffuse optical tomography (IG-DOT) using numerical simulations. It is also shown that by assuming identical RI for all regions of tissue would lead to erroneous estimation of optical properties. The a priori knowledge of the RI for the segmented regions of tissue in IG-DOT, which is difficult to obtain for the in vivo cases, leads to more accurate estimates of optical properties. Even inclusion of approximated RI values, obtained from the literature, for the regions of tissue resulted in better estimates of optical properties, with values comparable to that of having the correct knowledge of RI for different regions of tissue.
Resumo:
The permeability index Ck, similar to the compression index, is the slope of the void ratio – coefficient of permeability relationship. Literature shows that, in general, for sensitive clays it can be related to initial void ratio by Ck = 0.5e0. The possibility of obtaining such a relationship for Cochin marine clays in terms of liquid limit void ratio is indicated in this paper. Analysis of permeability behaviour of Cochin marine clays and the test results available in published literature using generalized state parameter approach show that, in principle, these forms of equations for the permeability index are tenable, even though they were obtained based on experimental observation alone.
Resumo:
Soils showing changes in plasticity characteristics upon driving form an important group in tropical soils. These changes are attributed to the grouping of particles into aggregates either due to mineralogy or presence of cementing agents and/or pore fluid characteristics. These changes are found to be permanent. In this paper, the effect of these changes leading to changes in index properties is discussed. The coefficient of permeability has been found to be comparable at liquid limit water content for different soils of varying liquid limit values. Permeability is an indirect reflection of microstructure and indicates the flow rate, which depends upon pore geometry. Other mechanical properties like compressibility and shear strength also depend upon pore geometry. These microstructural aspects of liquid limit as a reference state for the analysis of engineering behavior of tropical soils are examined in detail.
Resumo:
Seizure electroencephalography (EEG) was recorded from two channels-right (Rt) and left (Lt)-during bilateral electroconvulsive therapy (ECT) (n = 12) and unilateral ECT (n = 12). The EEG was also acquired into a microcomputer and was analyzed without knowledge of the clinical details. EEG recordings of both ECT procedures yielded seizures of comparable duration. The Strength Symmetry Index (SSI) was computed from the early- and midseizure phases using the fractal dimension of the EEG. The seizures of unilateral ECT were characterized by significantly smaller SSI in both phases. More unilateral than bilateral ECT seizures had a smaller than median SSI in both phases. The seizures also differed on other measures as reported in the literature. The findings indicate that SSI may be a potential measure of seizure adequacy that remains to be validated in future research.
Resumo:
We describe here two non-interferometric methods for the estimation of the phase of transmitted wavefronts through refracting objects. The phase of the wavefronts obtained is used to reconstruct either the refractive index distribution of the objects or their contours. Refraction corrected reconstructions are obtained by the application of an iterative loop incorporating digital ray tracing for forward propagation and a modified filtered back projection (FBP) for reconstruction. The FBP is modified to take into account non-straight path propagation of light through the object. When the iteration stagnates, the difference between the projection data and an estimate of it obtained by ray tracing through the final reconstruction is reconstructed using a diffraction tomography algorithm. The reconstruction so obtained, viewed as a correction term, is added to the estimate of the object from the loop to obtain an improved final refractive index reconstruction.
Resumo:
The absorption and index of refraction of polypyrrole (PPy) and poly-3-methylthiophene (PMeT), from low frequencies up to 4 THz, have been measured by tera-Herz (THz) time-domain spectroscopy. The complex conductance was obtained over this range of frequency. Highly conducting metallic samples follow the Drude model, whereas less conducting ones fit the localization-modified Drude model. The carrier scattering time and mobility in conducting polymers can be directly determined from these measurements.