17 resultados para Redwood Library and Athenaeum (R.I.)
Resumo:
1. The metabolic disposition of R-(+)-pulegone (1) was examined in rats following four daily oral doses (250 mg/kg). 2. Six metabolites, namely pulegol (II), 2-hydroxy-2-(1-hydroxy-1-methylethyl)-5-methylcyclohexanone (III), 3,6-dimethyl-7a-hydroxy-5,6,7,7a-tetrahydro-2(4H)-benzofuranone (IV), menthofuran (V), 5-methyl-2-(1-methyl-1-carboxyethylidene)cyclohexanone (VI), and 5-methyl-5-hydroxy-2-(1-hydroxy-1-carboxyethyl)cyclohexanone (VII) have previously been isolated from rat urine, and identified (Moorthy et al. (1989a). Eight new metabolites have now been isolated from rat urine, namely, 5-hydroxy-pulegone (VIII), piperitone (IX), piperitenone (X), 7-hydroxy-piperitone (XI), 8-hydroxy piperitone (XII), p-cresol (XIII), geranic acid (XIV) and neronic acid (XV). These were identified by n.m.r., i.r. and mass spectrometry. 3. Based on these results, metabolic pathways for the biotransformation of R-(+)-pulegone in rat have been proposed.
Resumo:
A Cambridge Structural Database (CSD) analysis on halogen center dot center dot center dot halogen contacts (X...X) in organic crystals has been carried out to review the classification criteria for type I, type II, and quasi type I/II halogen interactions. Trends observed in previous CSD analyses of the phenomenon are reinforced in the present study. The manner in which these interactions are manifested in cocrystals of 4-bromobenzamide and dicarboxylic acid is examined. The design strategy for these cocrystals uses synthon theory and follows from an understanding of the crystal structures of gamma-hydroquinone and a previously studied set of 4-hydroxybenzamide dicarboxylic acid cocrystals, making use of Br/OH isostructurality. All cocrystals are obtained by clean insertion of dicarboxylic acids between 4-bromobenzamide molecules. The strategy is deliberate and the prediction of synthons done well in advance, as evidenced from the robustness of the acid-amide heterosynthons in all nine crystal structures, with no aberrant structures in the crystallization experiments. Formation of the acid-amide synthon in these cocrystals is identified with IR spectroscopy. The packing in these cocrystals can be distinguished in terms of whether the Br...Br interactions are type I or II. Eight sets of dimorphs were retrieved from the CSD, wherein the basis of the polymorphism is that one crystal has a type I Br...Br interaction, while the other has a type II interaction.