318 resultados para Radar defense networks
Resumo:
We study sensor networks with energy harvesting nodes. The generated energy at a node can be stored in a buffer. A sensor node periodically senses a random field and generates a packet. These packets are stored in a queue and transmitted using the energy available at that time at the node. For such networks we develop efficient energy management policies. First, for a single node, we obtain policies that are throughput optimal, i.e., the data queue stays stable for the largest possible data rate. Next we obtain energy management policies which minimize the mean delay in the queue. We also compare performance of several easily implementable suboptimal policies. A greedy policy is identified which, in low SNR regime, is throughput optimal and also minimizes mean delay. Next using the results for a single node, we develop efficient MAC policies.
Resumo:
A parentheses-free code is suggested for the description of two-terminal electrical networks for computer analysis.
Resumo:
Schoeffler has derived continuously equivalent networks in the nodal-admittance domain. The letter derives a corresponding result in state space that combines the usefulness of Schoeffler's result and the power of the state-variable approach.
Resumo:
The deviation in the performance of active networks due to practical operational amplifiers (OA) is mainly because of the finite gain bandwidth productBand nonzero output resistanceR_0. The effect ofBandR_0on two OA impedances and single and multi-OA filters are discussed. In filters, the effect ofR_0is to add zeros to the transfer function often making it nonminimum phase. A simple method of analysis has been suggested for 3-OA biquad and coupled biquad circuits. A general method of noise minimization of the generalized impedance converter (GIC), while operating OA's within the prescribed voltage and current limits, is also discussed. The 3-OA biquadratic sections analyzed also exhibit noise behavior and signal handling capacity similar to the GIC. The GIC based structures are found to be better than other configurations both in biquadratic sections and direct realizations of higher order transfer functions.
Resumo:
Homodimeric protein tryptophanyl tRNA synthetase (TrpRS) has a Rossmann fold domain and belongs to the 1c subclass of aminoacyl tRNA synthetases. This enzyme performs the function of acylating the cognate tRNA. This process involves a number of molecules (2 protein subunits, 2 tRNAs and 2 activated Trps) and thus it is difficult to follow the complex steps in this process. Structures of human TrpRS complexed with certain ligands are available. Based on structural and biochemical data, mechanism of activation of Trp has been speculated. However, no structure has yet been solved in the presence of both the tRNA(Trp) and the activated Trp (TrpAMP). In this study, we have modeled the structure of human TrpRS bound to the activated ligand and the cognate tRNA. In addition, we have performed molecular dynamics (MD) simulations on these models as well as other complexes to capture the dynamical process of ligand induced conformational changes. We have analyzed both the local and global changes in the protein conformation from the protein structure network (PSN) of MD snapshots, by a method which was recently developed in our laboratory in the context of the functionally monomeric protein, methionyl tRNA synthetase. From these investigations, we obtain important information such as the ligand induced correlation between different residues of this protein, asymmetric binding of the ligands to the two subunits of the protein as seen in the crystal structure analysis, and the path of communication between the anticodon region and the aminoacylation site. Here we are able to elucidate the role of dimer interface at a level of detail, which has not been captured so far.
Resumo:
We study the performance of greedy scheduling in multihop wireless networks where the objective is aggregate utility maximization. Following standard approaches, we consider the dual of the original optimization problem. Optimal scheduling requires selecting independent sets of maximum aggregate price, but this problem is known to be NP-hard. We propose and evaluate a simple greedy heuristic. Analytical bounds on performance are provided and simulations indicate that the greedy heuristic performs well in practice.
Resumo:
This paper compares closed-loop performance of seeker-based and radar-based estimators for surface-to-air interception through 6-degree-of-freedom simulation using proportional navigation guidance.Ground radar measurements are evader range, azimuth and elevation angles contaminated by Gaussian noise. Onboard seeker measurements are pursuer-evader relative range, range rate also contaminated by Gaussian noise. The gimbal angles and line-of-sight rates in the gimbal frame,contaminated by time-correlated non-Gaussian noise with realistic numerical values are also available as measurements. In both the applications, extended Kalman filter with Gaussian noise assumption are used for state estimation. For a typical engagement, it is found that,based on Monte Carlo studies, seeker estimator outperforms radar estimator in terms of autopilot demand and reduces the miss distance.Thus, a seeker estimator with white Gaussian assumption is found to be adequate to handle the measurements even in the presence of non-Gaussian correlated noise. This paper uses realistic numerical values of all noise parameters.
Resumo:
Two new coordination polymers [Cu(L-1)(2)](n)(ClO4)(n)center dot 2nH(2)O (1), [Cu(L-2)(2)](n)(ClO4)(n)center dot 2nH(2)O (2) of polydentate imine/pyridyl ligands, L-1 and L-2 with Cu(I) ion have been synthesized and characterized by single crystal X-ray diffraction studies, elemental analyses, IR' UV-vis and NMR spectroscopy. They represent 3-dimensional, sixfold interpenetrating diamondoid network structures having large pores of dimension, 35 x 21 angstrom(2) in 1 and 38 x 19 angstrom(2) in 2, respectively.
Resumo:
In this work, we have tried to emphasize the connection between mycobacterial growth and regulation of gene expression. Utilization of multiple carbon sources and diauxic growth helps bacteria to regulate gene expression at an optimum level so that the inhospitable conditions encountered during nutrient depletion can be circumvented. These aspects will be discussed with respect to mycobacterial growth in subsequent sections. Identification and characterization of genes induced under such conditions is helpful to understand the physiology of the bacterium. Although it is necessary to compare the total expression profile of proteins as they transit from vegetative growth to stationary phase, at times a lot of insights can be deciphered from the expression pattern of one or two proteins. We have compared the protein expression and sigma factor selectivity of two such proteins in M. smegmatis to understand the differential regulation of genes playing diverse function in the same species. Some newer insights on the structure and function of one of the Dps proteins are also explained.
Resumo:
The interdependence of the concept of allostery and enzymatic catalysis, and they being guided by conformational mobility is gaining increased prominence. However, to gain a molecular level understanding of llostery and hence of enzymatic catalysis, it is of utter importance that the networks of amino acids participating in allostery be deciphered. Our lab has been exploring the methods of network analysis combined with molecular dynamics simulations to understand allostery at molecular level. Earlier we had outlined methods to obtain communication paths and then to map the rigid/flexible regions of proteins through network parameters like the shortest correlated paths, cliques, and communities. In this article, we advance the methodology to estimate the conformational populations in terms of cliques/communities formed by interactions including the side-chains and then to compute the ligand-induced population shift. Finally, we obtain the free-energy landscape of the protein in equilibrium, characterizing the free-energy minima accessed by the protein complexes. We have chosen human tryptophanyl-tRNA synthetase (hTrpRS), a protein esponsible for charging tryptophan to its cognate tRNA during protein biosynthesis for this investigation. This is a multidomain protein exhibiting excellent allosteric communication. Our approach has provided valuable structural as well as functional insights into the protein. The methodology adopted here is highly generalized to illuminate the linkage between protein structure networks and conformational mobility involved in the allosteric mechanism in any protein with known structure.
Resumo:
An adaptive drug delivery design is presented in this paper using neural networks for effective treatment of infectious diseases. The generic mathematical model used describes the coupled evolution of concentration of pathogens, plasma cells, antibodies and a numerical value that indicates the relative characteristic of a damaged organ due to the disease under the influence of external drugs. From a system theoretic point of view, the external drugs can be interpreted as control inputs, which can be designed based on control theoretic concepts. In this study, assuming a set of nominal parameters in the mathematical model, first a nonlinear controller (drug administration) is designed based on the principle of dynamic inversion. This nominal drug administration plan was found to be effective in curing "nominal model patients" (patients whose immunological dynamics conform to the mathematical model used for the control design exactly. However, it was found to be ineffective in curing "realistic model patients" (patients whose immunological dynamics may have off-nominal parameter values and possibly unwanted inputs) in general. Hence, to make the drug delivery dosage design more effective for realistic model patients, a model-following adaptive control design is carried out next by taking the help of neural networks, that are trained online. Simulation studies indicate that the adaptive controller proposed in this paper holds promise in killing the invading pathogens and healing the damaged organ even in the presence of parameter uncertainties and continued pathogen attack. Note that the computational requirements for computing the control are very minimal and all associated computations (including the training of neural networks) can be carried out online. However it assumes that the required diagnosis process can be carried out at a sufficient faster rate so that all the states are available for control computation.
Resumo:
Multielectrode neurophysiological recording and high-resolution neuroimaging generate multivariate data that are the basis for understanding the patterns of neural interactions. How to extract directions of information flow in brain networks from these data remains a key challenge. Research over the last few years has identified Granger causality as a statistically principled technique to furnish this capability. The estimation of Granger causality currently requires autoregressive modeling of neural data. Here, we propose a nonparametric approach based on widely used Fourier and wavelet transforms to estimate both pairwise and conditional measures of Granger causality, eliminating the need of explicit autoregressive data modeling. We demonstrate the effectiveness of this approach by applying it to synthetic data generated by network models with known connectivity and to local field potentials recorded from monkeys performing a sensorimotor task.
Resumo:
We consider a single-hop data-gathering sensor network, consisting of a set of sensor nodes that transmit data periodically to a base-station. We are interested in maximizing the lifetime of this network. With our definition of network lifetime and the assumption that the radio transmission energy consumption forms the most significant portion of the total energy consumption at a sensor node, we attempt to enhance the network lifetime by reducing the transmission energy budget of sensor nodes by exploiting three system-level opportunities. We pose the problem of maximizing lifetime as a max-min optimization problem subject to the constraint of successful data collection and limited energy supply at each node. This turns out to be an extremely difficult optimization to solve. To reduce the complexity of this problem, we allow the sensor nodes and the base-station to interactively communicate with each other and employ instantaneous decoding at the base-station. The chief contribution of the paper is to show that the computational complexity of our problem is determined by the complex interplay of various system-level opportunities and challenges.
Resumo:
We propose a solution based on message passing bipartite networks, for deep packet inspection, which addresses both speed and memory issues, which are limiting factors in current solutions. We report on a preliminary implementation and propose a parallel architecture.
Resumo:
We consider the incentive compatible broadcast (ICB) problem in ad hoc wireless networks with selfish nodes. We design a Bayesian incentive compatible Broadcast (BIC-B) protocol to address this problem. VCG mechanism based schemes have been popularly used in the literature to design dominant strategy incentive compatible (DSIC) protocols for ad hoe wireless networks. VCG based mechanisms have two critical limitations: (i) the network is required to he bi-connected, (ii) the resulting protocol is not budget balanced. Our proposed BIC-B protocol overcomes these difficulties. We also prove the optimality of the proposed scheme.