26 resultados para Radar Accuracy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ranking problems have become increasingly important in machine learning and data mining in recent years, with applications ranging from information retrieval and recommender systems to computational biology and drug discovery. In this paper, we describe a new ranking algorithm that directly maximizes the number of relevant objects retrieved at the absolute top of the list. The algorithm is a support vector style algorithm, but due to the different objective, it no longer leads to a quadratic programming problem. Instead, the dual optimization problem involves l1, ∞ constraints; we solve this dual problem using the recent l1, ∞ projection method of Quattoni et al (2009). Our algorithm can be viewed as an l∞-norm extreme of the lp-norm based algorithm of Rudin (2009) (albeit in a support vector setting rather than a boosting setting); thus we refer to the algorithm as the ‘Infinite Push’. Experiments on real-world data sets confirm the algorithm’s focus on accuracy at the absolute top of the list.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report novel resistor grid network based space cloth for application in single and multi layer radar absorbers. The space cloth is analyzed and relations are derived for the sheet resistance in terms of the resistor in the grid network. Design curves are drawn using MATLAB and the space cloth is analyzed using HFSS™ software in a Salisbury screen for S, C and X bands. Next, prediction and simulation results for a three layer Jaumann absorber using square grid resistor network with a Radar Cross Section Reduction (RCSR) of -15 dB over C, X and Ku bands is reported. The simulation results are encouraging and have led to the fabrication of prototype broadband radar absorber and experimental work is under progress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flood is one of the detrimental hydro-meteorological threats to mankind. This compels very efficient flood assessment models. In this paper, we propose remote sensing based flood assessment using Synthetic Aperture Radar (SAR) image because of its imperviousness to unfavourable weather conditions. However, they suffer from the speckle noise. Hence, the processing of SAR image is applied in two stages: speckle removal filters and image segmentation methods for flood mapping. The speckle noise has been reduced with the help of Lee, Frost and Gamma MAP filters. A performance comparison of these speckle removal filters is presented. From the results obtained, we deduce that the Gamma MAP is reliable. The selected Gamma MAP filtered image is segmented using Gray Level Co-occurrence Matrix (GLCM) and Mean Shift Segmentation (MSS). The GLCM is a texture analysis method that separates the image pixels into water and non-water groups based on their spectral feature whereas MSS is a gradient ascent method, here segmentation is carried out using spectral and spatial information. As test case, Kosi river flood is considered in our study. From the segmentation result of both these methods are comprehensively analysed and concluded that the MSS is efficient for flood mapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary objective of the present study is to show that for the most common configuration of an impactor system, the accelerometer cannot exactly reproduce the dynamic response of a specimen subjected to impact loading. An equivalent Lumped Parameter Model (LPM) of the given impactor set-up has been formulated for assessing the accuracy of an accelerometer mounted in a drop-weight impactor set-up for an axially loaded specimen. A specimen under the impact loading is represented by a non-linear spring of varying stiffness, while the accelerometer is assumed to behave in a linear manner due to its high stiffness. Specimens made of steel, aluminium and fibre-reinforced composite (FRC) are used in the present study. Assuming the force-displacement response obtained in an actual impact test to be the true behaviour of the test specimen, a suitable numerical approach has been used to solve the governing non-linear differential equations of a three degrees-of-freedom (DOF) system in a piece-wise linear manner. The numerical solution of the governing differential equations following an explicit time integration scheme yields an excellent reproduction of the mechanical behaviour of the specimen, consequently confirming the accuracy of the numerical approach. However, the spring representing the accelerometer predicts a response that qualitatively matches the assumed force-displacement response of the test specimen with a perceptibly lower magnitude of load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparison of reflectivity data of radars onboard CloudSat and TRMM is performed using coincident overpasses. The contoured frequency by altitude diagrams (CFADs) are constructed for two cases: (a) only include collocated vertical profiles that are most likely to be raining and (b) include all collocated profiles along with cloudy pixels falling within a distance of about 50 km from the centre point of coincidence. Our analysis shows that for both cases, CloudSat underestimates the radar reflectivity by about 10 dBZ compared to that of TRMM radar below 15 km altitude. The difference is well outside the uncertainty value of similar to 2 dBZ of each radar. Further, CloudSat reflectivity shows a decreasing trend while that of TRMM radar an increasing trend below 4 km height. Basically W-band radar that CloudSat flies suffers strong attenuation in precipitating clouds and its reflectivity value rarely exceeds 20 dBZ though its technical specification indicates the upper measurement limit to be 40 dBZ. TRMM radar, on the other hand, cannot measure values below 17 dBZ. In fact combining data from these two radars seems to give a better overall spatial structure of convective clouds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, first a Fortran code is developed for three dimensional linear elastostatics using constant boundary elements; the code is based on a MATLAB code developed by the author earlier. Next, the code is parallelized using BLACS, MPI, and ScaLAPACK. Later, the parallelized code is used to demonstrate the usefulness of the Boundary Element Method (BEM) as applied to the realtime computational simulation of biological organs, while focusing on the speed and accuracy offered by BEM. A computer cluster is used in this part of the work. The commercial software package ANSYS is used to obtain the `exact' solution against which the solution from BEM is compared; analytical solutions, wherever available, are also used to establish the accuracy of BEM. A pig liver is the biological organ considered. Next, instead of the computer cluster, a Graphics Processing Unit (GPU) is used as the parallel hardware. Results indicate that BEM is an interesting choice for the simulation of biological organs. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature. Also, a serial MATLAB code, and both serial and parallel versions of a Fortran code, which can solve three dimensional (3D) linear elastostatic problems using constant boundary elements, are provided as supplementary files that can be freely downloaded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification and mapping of crevasses in glaciated regions is important for safe movement. However, the remote and rugged glacial terrain in the Himalaya poses greater challenges for field data collection. In the present study crevasse signatures were collected from Siachen and Samudra Tapu glaciers in the Indian Himalaya using ground-penetrating radar (GPR). The surveys were conducted using the antennas of 250 MHz frequency in ground mode and 350 MHz in airborne mode. The identified signatures of open and hidden crevasses in GPR profiles collected in ground mode were validated by ground truthing. The crevasse zones and buried boulder areas in a glacier were identified using a combination of airborne GPR profiles and SAR data, and the same have been validated with the high-resolution optical satellite imagery (Cartosat-1) and Survey of India mapsheet. Using multi-sensor data, a crevasse map for Samudra Tapu glacier was prepared. The present methodology can also be used for mapping the crevasse zones in other glaciers in the Himalaya.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, possibility of simulating biological organs in realtime using the Boundary Element Method (BEM) is investigated, with specific reference to the speed and the accuracy offered by BEM. First, a Graphics Processing Unit (GPU) is used to speed up the BEM computations to achieve the realtime performance. Next, instead of the GPU, a computer cluster is used. A pig liver is the biological organ considered. Results indicate that BEM is an interesting choice for the simulation of biological organs. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the current study is to evaluate the fidelity of load cell reading during impact testing in a drop-weight impactor using lumped parameter modeling. For the most common configuration of a moving impactor-load cell system in which dynamic load is transferred from the impactor head to the load cell, a quantitative assessment is made of the possible discrepancy that can result in load cell response. A 3-DOF (degrees-of-freedom) LPM (lumped parameter model) is considered to represent a given impact testing set-up. In this model, a test specimen in the form of a steel hat section similar to front rails of cars is represented by a nonlinear spring while the load cell is assumed to behave in a linear manner due to its high stiffness. Assuming a given load-displacement response obtained in an actual test as the true behavior of the specimen, the numerical solution of the governing differential equations following an implicit time integration scheme is shown to yield an excellent reproduction of the mechanical behavior of the specimen thereby confirming the accuracy of the numerical approach. The spring representing the load cell, however,predicts a response that qualitatively matches the assumed load-displacement response of the test specimen with a perceptibly lower magnitude of load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic objective in the present study is to show that for the most common configuration of an impactor system, an accelerometer cannot exactly reproduce the dynamic response of a specimen subject to impact loading. Assessment of the accelerometer mounted in a drop-weight impactor setup for an axially loaded specimen is done with the aid of an equivalent lumped parameter model (LPM) of the setup. A steel hat-type specimen under the impact loading is represented as a non-linear spring of varying stiffness, while the accelerometer is assumed to behave in a linear manner due to its high stiffness. A suitable numerical approach has been used to solve the non-linear governing equations for a 3 degrees-of-freedom system in a piece-wise linear manner. The numerical solution following an explicit time integration scheme is used to yield an excellent reproduction of the mechanical behavior of the specimen thereby confirming the accuracy of the numerical approach. The spring representing the accelerometer, however, predicts a response that qualitatively matches the assumed load–displacement response of the test specimen with a perceptibly lower magnitude of load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Up to now, high-resolution mapping of surface water extent from satellites has only been available for a few regions, over limited time periods. The extension of the temporal and spatial coverage was difficult, due to the limitation of the remote sensing technique e.g., the interaction of the radiation with vegetation or cloud for visible observations or the temporal sampling with the synthetic aperture radar (SAR)]. The advantages and the limitations of the various satellite techniques are reviewed. The need to have a global and consistent estimate of the water surfaces over long time periods triggered the development of a multi-satellite methodology to obtain consistent surface water all over the globe, regardless of the environments. The Global Inundation Extent from Multi-satellites (GIEMS) combines the complementary strengths of satellite observations from the visible to the microwave, to produce a low-resolution monthly dataset () of surface water extent and dynamics. Downscaling algorithms are now developed and applied to GIEMS, using high-spatial-resolution information from visible, near-infrared, and synthetic aperture radar (SAR) satellite images, or from digital elevation models. Preliminary products are available down to 500-m spatial resolution. This work bridges the gaps and prepares for the future NASA/CNES Surface Water Ocean Topography (SWOT) mission to be launched in 2020. SWOT will delineate surface water extent estimates and their water storage with an unprecedented spatial resolution and accuracy, thanks to a SAR in an interferometry mode. When available, the SWOT data will be adopted to downscale GIEMS, to produce a long time series of water surfaces at global scale, consistent with the SWOT observations.