214 resultados para RESONANCE FREQUENCY-ANALYSIS
Resumo:
We demonstrate a method to recover the Young's modulus (E) of a tissue-mimicking phantom from measurements of ultrasound modulated optical tomography (UMOT). The object is insonified by a dualbeam, confocal ultrasound transducer (US) oscillating at frequencies f(0) and f(0) + Delta f and the variation of modulation depth (M) in the autocorrelation of light traversed through the focal region of the US transducer against Delta f is measured. From the dominant peaks observed in the above variation, the natural frequencies of the insonified region associated with the vibration along the US transducer axis are deduced. A consequence of the above resonance is that the speckle fluctuation at the resonance frequency has a higher signal-to-noise to ratio (SNR). From these natural frequencies and the associated eigenspectrum of the oscillating object, Young's modulus (E) of the material in the focal region is recovered. The working of this method is confirmed by recovering E in the case of three tissue-mimicking phantoms of different elastic modulus values. (C) 2011 Optical Society of America
Resumo:
Significant changes are reported in extreme rainfall characteristics over India in recent studies though there are disagreements on the spatial uniformity and causes of trends. Based on recent theoretical advancements in the Extreme Value Theory (EVT), we analyze changes in extreme rainfall characteristics over India using a high-resolution daily gridded (1 degrees latitude x 1 degrees longitude) dataset. Intensity, duration and frequency of excess rain over a high threshold in the summer monsoon season are modeled by non-stationary distributions whose parameters vary with physical covariates like the El-Nino Southern Oscillation index (ENSO-index) which is an indicator of large-scale natural variability, global average temperature which is an indicator of human-induced global warming and local mean temperatures which possibly indicate more localized changes. Each non-stationary model considers one physical covariate and the best chosen statistical model at each rainfall grid gives the most significant physical driver for each extreme rainfall characteristic at that grid. Intensity, duration and frequency of extreme rainfall exhibit non-stationarity due to different drivers and no spatially uniform pattern is observed in the changes in them across the country. At most of the locations, duration of extreme rainfall spells is found to be stationary, while non-stationary associations between intensity and frequency and local changes in temperature are detected at a large number of locations. This study presents the first application of nonstationary statistical modeling of intensity, duration and frequency of extreme rainfall over India. The developed models are further used for rainfall frequency analysis to show changes in the 100-year extreme rainfall event. Our findings indicate the varying nature of each extreme rainfall characteristic and their drivers and emphasize the necessity of a comprehensive framework to assess resulting risks of precipitation induced flooding. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this work, it is demonstrated that the in situ growth of oriented nanometric aggregates of partially inverted zinc ferrite can potentially pave a way to alter and tune magnetocrystalline anisotropy that, in turn, dictates ferromagnetic resonance frequency (f(FMR)) by inducing strain due to aggregation. Furthermore, the influence of interparticle interaction on magnetic properties of the aggregates is investigated. Mono-dispersed zinc ferrite nanoparticles (<5 nm) with various degrees of aggregation were prepared through decomposition of metal-organic compounds of zinc (II) and iron (III) in an alcoholic solution under controlled microwave irradiation, below 200 degrees C. The nanocrystallites were found to possess high degree of inversion (>0.5). With increasing order of aggregation in the samples, saturation magnetization (at 5 K) is found to decrease from 38 emu/g to 24 emu/g, while coercivity is found to increase gradually by up to 100% (525 Oe to 1040 Oe). Anisotropy-mediated shift of f(FMR) has also been measured and discussed. In essence, the result exhibits an easy way to control the magnetic characteristics of nanocrystalline zinc ferrite, boosted with significant degree of inversion, at GHz frequencies. (C) 2015 AIP Publishing LLC.
Resumo:
The authors report the design and construction of a very simple vibrating reed apparatus with automatic frequency locking capability where the resonance frequency and the internal friction can be recorded continuously as a function of temperature. The apparatus is particularly suitable for studies down to liquid helium temperatures or below.
Resumo:
The solution for a line source of oscillatory strength kept at the origin in a wall bounding a semi-infinite viscous imcompressible stratified fluid is presented in an integral form. The behaviour of the flow at far field and near field is studied by an asymptotic expansion procedure. The streamlines for different parameters are drawn and discussed. The real characteristic straight lines present in the inviscid problem are modified by the viscosity and the solutions obtained are valid even at the resonance frequency.
Resumo:
Time reversal active sensing using Lamb waves is investigated for health monitoring of a metallic structure. Experiments were conducted on an aluminum plate to study the time reversal behavior of A(0) and S-0 Lamb wave modes under narrow band and broad band pulse excitation. Damage in the form of a notch was introduced in the plate to study the changes in the characteristics of the time reversed Lamb wave modes experimentally. Time-frequency analysis of the time reversed signal was carried out to extract the damage information. A measure of damage based on wavelet transform was derived to quantify the hidden damage information in the time reversed signal. It has been shown that time reversal can be used to achieve temporal recompression of Lamb waves under broadband signal excitation. Further, the broad band excitation can also improve the resolution of the technique in detecting closely located defects. This is demonstrated by picking up the reflection of waves from the edge of the plate, from a defect close to the edge of the plate and from defects located near to each other. This study shows the effectiveness of Lamb wave time reversal for temporal recompression of dispersive Lamb waves for damage detection in health monitoring applications. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Various metal salts (Na, K, Rb, and NH4) of monochloro acetic acid were prepared and the Cl-35 nuclear quadrupole resonance frequencies were measured at room temperature. A comparative study of nuclear quadrupole resonance frequencies of monochloro acetic acid and its metal salts is carried out. The frequency shifts obtained in the respective metal chloroacetates are used to estimate the changes in the ionicity of C-Cl bond. Further, the changes in the ionicity of C-Cl bond were used to estimate the percentage of intra-molecular charge transfer between respective cation-anion of the metal salts of chloro acetic acid. The nuclear quadrupole resonance frequency is found to decrease with increasing ionicity of the alkali metal ion.
Resumo:
It is shown that besides the continuous spectrum which damps away as inverse power of time, the coupled Alfvén wave equation, which gives coupling between a shear Alfvén wave and a surface wave, can also admit a well behaved harmonic solution in the closed form for a set of initial conditions. This solution, though valid for finite time intervals, points out that the Alfvén surface waves can have a band of frequency (instead of a monochromatic frequency for a nonsheared magnetic field) within which the local field line resonance frequency can lie, and thus can excite magnetic pulsations with latitude-dependent frequency. By considering magnetic fields not only varying in magnitude but also in direction, it is shown that the time interval for the validity of the harmonic solution depend upon the angle between the magnetic field directions on either side of the magnetopause. For small values of the angle the time interval can become appreciably large.
Resumo:
Separated Local Field (SLF) spectroscopy is a powerful tool for the determination of structure and dynamics of oriented systems such as membrane proteins oriented in lipid bilayers and liquid crystals. Of many SLF techniques available, Polarization Inversion Spin Exchange at Magic Angle (PISEMA) has found wide application due to its many favorable characteristics. However the pulse sequence suffers from its sensitivity to proton resonance frequency offset. Recently we have proposed a new sequence named 2(4)-SEMA (J. Chem. Phys. 132 (2010) 134301) that overcomes this problem of PISEMA. The present work demonstrates the advantage of 2(4)-SEMA as a highly sensitive SLF technique even for very large proton offset. 2(4)-SEMA has been designed for obtaining reliable dipolar couplings by switching the magic-angle spin-lock for protons over four quadrants as against the use of only two quadrants in PISEMA. It is observed that for on-resonance condition, 2(4)-SEMA gives rise to signal intensity comparable to or slightly higher than that from PISEMA. But under off-resonance conditions, intensities from 2(4)-SEMA are several fold higher than those from PISEMA. Comparison with another offset compensated pulse sequence, SAMPI4, also indicates a better intensity profile for 2(4)-SEMA. Experiments carried out on a single crystal of N-15 labeled N-acetyl-DL-valine and simulations have been used to study the relative performance of the pulse sequences considered. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The He I photoelectron spectra of bromine, methylamine, and their complex have been obtained, and the spectra show that lone-pair orbital energy of nitrogen in methylamine is stabilized by 1.8 eV and the bromine orbital energies are destabilized by about 0.5 eV due to complexation. Ab initio calculations have been performed on the charge-transfer complexes of Br-2 with ammonia and methyl-, dimethyl-, and trimethylamines at the 3-21G*, 6-311G, and 6-311G* levels and also with effective core potentials. Calculations predict donor and acceptor orbital energy shifts upon complexation, and there is a reasonable agreement between the calculated and experimental results. Complexation energies have been corrected for BSSE. Frequency analysis has confirmed that ammonia and trimethylamine form complexes with C-3v symmetry and methylamine and dimethylamine with C-s symmetry. Calculations reveal that the lone-pair orbital of nitrogen in amine and the sigma* orbital of Br-2 are involved in the charge-transfer interaction. LANL1DZ basis seems to be consistent and give a reliable estimate of the complexation energy. The computed complexation energies, orbital energy shifts, and natural bond orbital analysis show that the strength of the complex gradually increases from ammonia to trimethylamine.
Resumo:
Modern PWM inverter output voltage has high dv/dt, which causes problems such as voltage doubling that can lead to insulation failure, ground currents that results in electromagnetic interference concerns. The IGBT switching device used in such inverter are becoming faster, exacerbating these problems. This paper proposes a new procedure for designing the LC clamp filter. The filter increases the rise time of the output voltage of inverter, resulting in smaller dv/dt. In addition suitable selection of resonance frequency gives LCL filter configuration with improved attenuation. By adding this filter at output terminal of inverter which uses long cable, voltage doubling effect is reduced at the motor terminal. The design procedure is carried out in terms of the power converter based per unit scheme. This generalizes the design procedure to a wide range of power level and to study optimum designs. The effectiveness of the design is verified by computer simulation and experimental measurements.
Resumo:
Feature selection is an important first step in regional hydrologic studies (RHYS). Over the past few decades, advances in data collection facilities have resulted in development of data archives on a variety of hydro-meteorological variables that may be used as features in RHYS. Currently there are no established procedures for selecting features from such archives. Therefore, hydrologists often use subjective methods to arrive at a set of features. This may lead to misleading results. To alleviate this problem, a probabilistic clustering method for regionalization is presented to determine appropriate features from the available dataset. The effectiveness of the method is demonstrated by application to regionalization of watersheds in conterminous United States for low flow frequency analysis. Plausible homogeneous regions that are formed by using the proposed clustering method are compared with those from conventional methods of regionalization using L-moment based homogeneity tests. Results show that the proposed methodology is promising for RHYS.
Resumo:
The thermoacoustic prime mover (TAPM) is an attractive alternative as a pressure wave generator to drive Pulse Tube Cryocoolers (PTCs), by the absence of moving parts, construction simplicity, reasonable efficiency, and environmental friendly. Decreasing the resonance frequency and improving the efficiency of the TAPM are important to drive the PTCs. These are controlled by the working gas parameters other than the dimensions of TAPM. In this technical note, the experimental studies carried out to evaluate the influence of different working fluids on the performances of a twin standing wave TAPM at various operating pressures have been compared with the simulation studies of the same system using DeltaEc wherever possible. The reasonably good agreement between them indicates the utility of DeltaEc for the optimal design of TAPM with the right working fluids for practical applications. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Bi-layered Aurivillius compounds prove to be efficient candidates of nonvolatile memories. SrBi2Nb2O9 thin films were deposited by excimer laser ablation at low substrate temperature (400 °C) followed by an ex situ annealing at 750 °C. The polarization hysteresis behavior was confirmed by variation of polarization with the external applied electric field and also verified with capacitance versus voltage characteristics. The measured values of spontaneous and remnant polarizations were, respectively, 9 and 6 μC/cm2 with a coercive field of 90 kV/cm. The measured dielectric constant and dissipation factors at 100 kHz were 220 and 0.02, respectively. The frequency analysis of dielectric and ac conduction properties showed a distribution of relaxation times due to the presence of multiple grain boundaries in the films. The values of activation energies from the dissipation factor and grain interior resistance were found to be 0.9 and 1.3 eV, respectively. The deviation in these values was attributed to the energetic conditions of the grain boundaries and bulk grains. The macroscopic relaxation phenomenon is controlled by the higher resistive component in a film, such as grain boundaries at lower temperatures, which was highlighted in the present article in close relation to interior grain relaxation and conduction properties.
Resumo:
Thermoacoustic engines convert heat energy into high amplitude sound waves, which is used to drive thermoacoustic refrigerator or pulse tube cryocoolers by replacing the mechanical pistons such as compressors. The increasing interest in thermoacoustic technology is of its potentiality of no exotic materials, low cost and high reliability compared to vapor compression refrigeration systems. The experimental setup has been built based on the linear thermoacoustic model and some simple design parameters. The engines produce acoustic energy at the temperature difference of 325-450 K imposed along the stack of the system. This work illustrates the influence of stack parameters such as plate thickness (PT) and plate spacing (PS) with resonator length on the performance of thermoacoustic engine, which are measured in terms of onset temperature difference, resonance frequency and pressure amplitude using air as a working fluid. The results obtained from the experiments are in good agreement with the theoretical results from DeltaEc. (C) 2012 Elsevier Ltd. All rights reserved.