119 resultados para Réparation couplée à la transcription
Resumo:
Background: The Mycobacterium leprae genome has less than 50% coding capacity and 1,133 pseudogenes. Preliminary evidence suggests that some pseudogenes are expressed. Therefore, defining pseudogene transcriptional and translational potentials of this genome should increase our understanding of their impact on M. leprae physiology. Results: Gene expression analysis identified transcripts from 49% of all M. leprae genes including 57% of all ORFs and 43% of all pseudogenes in the genome. Transcribed pseudogenes were randomly distributed throughout the chromosome. Factors resulting in pseudogene transcription included: 1) co-orientation of transcribed pseudogenes with transcribed ORFs within or exclusive of operon-like structures; 2) the paucity of intrinsic stem-loop transcriptional terminators between transcribed ORFs and downstream pseudogenes; and 3) predicted pseudogene promoters. Mechanisms for translational ``silencing'' of pseudogene transcripts included the lack of both translational start codons and strong Shine-Dalgarno (SD) sequences. Transcribed pseudogenes also contained multiple ``in-frame'' stop codons and high Ka/Ks ratios, compared to that of homologs in M. tuberculosis and ORFs in M. leprae. A pseudogene transcript containing an active promoter, strong SD site, a start codon, but containing two in frame stop codons yielded a protein product when expressed in E. coli. Conclusion: Approximately half of M. leprae's transcriptome consists of inactive gene products consuming energy and resources without potential benefit to M. leprae. Presently it is unclear what additional detrimental affect(s) this large number of inactive mRNAs has on the functional capability of this organism. Translation of these pseudogenes may play an important role in overall energy consumption and resultant pathophysiological characteristics of M. leprae. However, this study also demonstrated that multiple translational ``silencing'' mechanisms are present, reducing additional energy and resource expenditure required for protein production from the vast majority of these transcripts.
Resumo:
A positive cis-acting DNA element in the near 5'-upstream region of the CYP2B1/B2 genes in rat liver was found to play an important role in the transcription of these genes. An oligonucleotide covering -69 to -98 nt mimicked the gel mobility shift pattern given by the fragment -179 to +29 nt, which was earlier found adequate to confer the regulatory features of this gene. Two major complexes were seen, of which the slower and faster moving complexes became intense under uninduced and Phenobarbitone-induced conditions respectively. Minigene cloned DNA plasmid covering -179 to +181 nt in pUC 19 and Bal 31 mutants derived from this parent were transcribed in whole nuclei and cell free transcription extracts and mutants containing only upto -75 nt of the upstream were poorly transcribed. Transcription extracts from phenobarbitone-injected rat liver nuclei were significantly more active than extracts from uninduced rats in transcribing the minigene constructs. Addition of the oligonucleotide (-69 to -98nt) specifically inhibited the transcription of the minigene construct (-179 to +181 nt) in the cell free transcription system. It is therefore, concluded that the region -69 to -98 nt acts as a positive cis-acting element in the transcription of the CYP2B1/B2 genes and in mediating the inductive effects of phenobarbitone.
Resumo:
Purified rinderpest virus was earlier shown to transcribe in vitro, all virus-specific mRNAs with the promoter-proximal N mRNA being the most abundant. Presently, this transcription system has been shown to synthesize full length monocistronic mRNAs comparable to those made in infected cells. Small quantities of bi- and tricistronic mRNAs are also synthesized. Rinderpest virus synthesizes in vitro, a leader RNA of not, vert, similar 55 nucleotides in length. Purified rinderpest virus also exhibits RNA editing activity during the synthesis of P mRNA as shown by primer extension analysis of the mRNA products.
Resumo:
The phosphoprotein P of paramyxoviruses is known to play more than one role in genome transcription and replication. Phosphorylation of P at the NH2 terminus by cellular casein kinase II has been shown to be necessary for transcription of the genome in some of the viruses, while it is dispensable for replication. The phosphorylation null mutant of rinderpest virus P protein, in which three serine residues have been mutated, has been shown earlier to be non-functional in an in vivo minigenome replication/transcription system. In this work, we have shown that the phosphorylation of P protein is essential for transcription, whereas the null mutant is active in replication of the genome in vivo. The null mutant P acts as a transdominant repressor of transcriptional activity of wild-type P and as an activator of replication carried out by wild-type P protein. These results suggest the phosphorylation status of P may act as a replication switch during virus replication. We also show that the phosphorylation null mutant P is capable of interacting with L and N proteins and is able to form a tripartite complex of L-(N-P) when expressed in insect cells, similar to wild-type P protein.
Resumo:
Background: Resistin is a cysteine rich protein, mainly expressed and secreted by circulating human mononuclear cells. While several factors responsible for transcription of mouse resistin gene have been identified, not much is known about the factors responsible for the differential expression of human resistin.Methodology/Principal Finding: We show that the minimal promoter of human resistin lies within similar to 80 bp sequence upstream of the transcriptional start site (-240) whereas binding sites for cRel, CCAAT enhancer binding protein alpha (C/EBP-alpha), activating transcription factor 2 (ATF-2) and activator protein 1 (AP-1) transcription factors, important for induced expression, are present within sequences up to -619. Specificity Protein 1(Sp1) binding site (-276 to -295) is also present and an interaction of Sp1 with peroxisome proliferator activating receptor gamma (PPAR gamma) is necessary for constitutive expression in U937 cells. Indeed co-immunoprecipitation assay demonstrated a direct physical interaction of Sp1 with PPAR gamma in whole cell extracts of U937 cells. Phorbol myristate acetate (PMA) upregulated the expression of resistin mRNA in U937 cells by increasing the recruitment of Sp1, ATF-2 and PPAR gamma on the resistin gene promoter. Furthermore, PMA stimulation of U937 cells resulted in the disruption of Sp1 and PPAR gamma interaction. Chromatin immunoprecipitation (ChIP) assay confirmed the recruitment of transcription factors phospho ATF-2, Sp1, Sp3, PPAR gamma, chromatin modifier histone deacetylase 1 (HDAC1) and the acetylated form of histone H3 but not cRel, C/EBP-alpha and phospho c-Jun during resistingene transcription.Conclusion: Our findings suggest a complex interplay of Sp1 and PPAR gamma along with other transcription factors that drives the expression of resistin in human monocytic U937 cells.
Resumo:
ErbB3 binding protein Ebp1 has been shown to downregulate ErbB3 receptor-mediated signaling to inhibit cell proliferation. Rinderpest virus belongs to the family Paramyxoviridae and is characterized by the presence of a non-segmented negative-sense RNA genome. In this work, we show that rinderpest virus infection of Vero cells leads to the down-regulation of the host factor Ebp1, at both the mRNA and protein levels. Ebp1 protein has been shown to co-localize with viral inclusion bodies in infected cells, and it is packaged into virions, presumably through its interaction with the N protein or the N-RNA itself. Overexpression of Ebp1 inhibits viral transcription and multiplication in infected cells, suggesting that a mutual antagonism operates between host factor Ebp1 and the virus.
Resumo:
SLC22A18, a poly-specific organic cation transporter, is paternally imprinted in humans and mice. It shows loss-of-heterozygosity in childhood and adult tumors, and gain-of-imprinting in hepatocarcinomas and breast cancers. Despite the importance of this gene, its transcriptional regulation has not been studied, and the promoter has not yet been characterized. We therefore set out to identify the potential cis-regulatory elements including the promoter of this gene. The luciferase reporter assay in human cells indicated that a region from -120 by to +78 by is required for the core promoter activity. No consensus TATA or CHAT boxes were found in this region, but two Sp1 binding sites were conserved in human, chimpanzee, mouse and rat. Mutational analysis of the two Sp1 sites suggested their requirement for the promoter activity. Chromatin-immunoprecipitation showed binding of Sp1 to the promoter region in vivo. Overexpression of Sp1 in Drosophila Sp1-null SL2 cells suggested that Sp1 is the transactivator of the promoter. The human core promoter was functional in mouse 3T3 and monkey COS7 cells. We found a CpG island which spanned the core promoter and exon 1. COBRA technique did not reveal promoter methylation in 10 normal oral tissues, 14 oral tumors, and two human cell lines HuH7 and A549. This study provides the first insight into the mechanism that controls expression of this imprinted tumor suppressor gene. A COBRA-based assay has been developed to look for promoter methylation in different cancers. The present data will help to understand the regulation of this gene and its role in tumorigenesis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
SLC22A18, a poly-specific organic cation transporter, is paternally imprinted in humans and mice. It shows loss-of-heterozygosity in childhood and adult tumors, and gain-of-imprinting in hepatocarcinomas and breast cancers. Despite the importance of this gene, its transcriptional regulation has not been studied, and the promoter has not yet been characterized. We therefore set out to identify the potential cis-regulatory elements including the promoter of this gene. The luciferase reporter assay in human cells indicated that a region from -120 by to +78 by is required for the core promoter activity. No consensus TATA or CHAT boxes were found in this region, but two Sp1 binding sites were conserved in human, chimpanzee, mouse and rat. Mutational analysis of the two Sp1 sites suggested their requirement for the promoter activity. Chromatin-immunoprecipitation showed binding of Sp1 to the promoter region in vivo. Overexpression of Sp1 in Drosophila Sp1-null SL2 cells suggested that Sp1 is the transactivator of the promoter. The human core promoter was functional in mouse 3T3 and monkey COS7 cells. We found a CpG island which spanned the core promoter and exon 1. COBRA technique did not reveal promoter methylation in 10 normal oral tissues, 14 oral tumors, and two human cell lines HuH7 and A549. This study provides the first insight into the mechanism that controls expression of this imprinted tumor suppressor gene. A COBRA-based assay has been developed to look for promoter methylation in different cancers. The present data will help to understand the regulation of this gene and its role in tumorigenesis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Continuous CO2 laser welding of an Fe-Cu dissimilar couple in a butt-weld geometry at different process conditions is studied. The process conditions are varied to identify and characterize the microstructural features that are independent of the welding mode. The study presents a characterization of the microstructure and mechanical properties of the welds. Detailed microstructural analysis of the weld/base-metal interface shows features that are different on the two sides of the weld. The iron side can grow into the weld with a local change in length scale, whereas the interface on the copper side indicates a barrier to growth. The interface is jagged, and a banded microstructure consisting of iron-rich layers could be observed next to the weld/Cu interface. The observations suggest that solidification initiates inside the melt, where iron and copper are mixed due to convective flow. The transmission electron microscopy (TEM) of the weld region also indicates the occasional presence of droplets of iron and copper. The microstructural observations are rationalized using arguments drawn from a thermodynamic analysis of the Fe-Cu system.
Resumo:
The startling increase in the occurrence of rifampicin (Rif) resistance in the clinical isolates of Mycobacterium tuberculosis worldwide is posing a serious concern to tuberculosis management. The majority of Rif resistance in bacteria arises from mutations in the RpoB subunit of the RNA polymerase. We isolated M. smegmatis strains harbouring either an insertion (6 aa) or a deletion (10 aa) in their RpoB proteins. Although these strains showed a compromised fitness for growth in 7H9 Middlebrook medium, their resistance to Rif was remarkably high. The attenuated growth of the strains correlated with decreased specific activities of the RNA polymerases from the mutants. While the RNA polymerases from the parent or a mutant strain (harbouring a frequently occurring mutation, H442Y, in RpoB) were susceptible to Rif-mediated inhibition of transcription from calf thymus DNA, those from the insertion and deletion mutants were essentially refractory to such inhibition. Three-dimensional structure modelling revealed that the RpoB amino acids that interact with Rif are either deleted or unable to interact with Rif due to their unsuitable spatial positioning in these mutants. We discuss possible uses of the RpoB mutants in studying transcriptional regulation in mycobacteria and as potential targets for drug design.
Resumo:
The crystal structure of the complex La(NO3)3.4(CH3)2SO has been solved by the heavy-atom method. The complex crystallizes in the monoclinic space group C2/e with four formula units in a unit cell of dimensions a= 14.94, b= 11.04, c= 15.54 A and fl= 109 ° 10'. The parameters have been refined by threedimensional least-squares procedures with anisotropic thermal parameters for all atoms except hydrogen. The final R index for 1257 observed reflexions is 0.094. The La 3 + ion is coordinated by ten oxygen atoms with La-O distances varying from 2.47 to 2.71 A. The geometry of the coordination polyhedron is described.
Resumo:
The TCP transcription factors control multiple developmental traits in diverse plant species. Members of this family share an similar to 60-residue-long TCP domain that binds to DNA. The TCP domain is predicted to form a basic helix-loop-helix ( bHLH) structure but shares little sequence similarity with canonical bHLH domain. This classifies the TCP domain as a novel class of DNA binding domain specific to the plant kingdom. Little is known about how the TCP domain interacts with its target DNA. We report biochemical characterization and DNA binding properties of a TCP member in Arabidopsis thaliana, TCP4. We have shown that the 58-residue domain of TCP4 is essential and sufficient for binding to DNA and possesses DNA binding parameters comparable to canonical bHLH proteins. Using a yeast-based random mutagenesis screen and site-directed mutants, we identified the residues important for DNA binding and dimer formation. Mutants defective in binding and dimerization failed to rescue the phenotype of an Arabidopsis line lacking the endogenous TCP4 activity. By combining structure prediction, functional characterization of the mutants, and molecular modeling, we suggest a possible DNA binding mechanism for this class of transcription factors.
Resumo:
The PI3-kinase pathway is the target of inactivation in achieving better cancer chemotherapy. Here, we report that p53-mediated transcription is inhibited by pharmacological inhibitors and a dominant-negative mutant of PI3-kinase, and this inhibition was relieved by a constitutively active mutant of PI3-kinase. Akt/PKB and mTOR, the downstream effectors of PI3-kinase, were also found to be essential. LY294002 (PI3-kinase inhibitor) pre-treatment altered the post-translational modifications and the sub-cellular localization of p53. Although LY294002 increased the chemosensitivity of cells to low concentrations of adriamycin (adriamycin-low), it protected the cells from cytotoxicity induced by high concentrations of adriamycin (adriamycin-high) in a p53-dependent manner. Further, we found that LY294002 completely abolished the activation of p53 target genes (particularly pro-apoptotic) under adriamycin-high conditions, whereas it only marginally repressed the p53 target genes under adriamycin-low conditions; in fact, it further activated the transcription of NOXA, HRK, APAF1 and CASP5 genes. Thus, the differential effect of PI3-kinase on p53 functions seems to be responsible for the differential regulation of DNA damage-induced cytotoxicity and cell death by PI3-kinase. Our finding becomes relevant in the light of ongoing combination chemotherapy trials with the PI3-kinase pathway inhibitors and underscores the importance of p53 status in the careful formulation of combination chemotherapies. Oncogene (2010) 29, 3605-3618; doi: 10.1038/onc.2010.123; published online 26 April 2010
Resumo:
The first two members of the new TlSrn+1−xLnxCunO2n+3+δ (Ln=La, Pr, or Nd) series of superconducting cuprates possessing 1021 and 1122 type structures are described. The n=1 (1021) members with Tcs around 40 K have electrons or holes as the majority charge carriers depending on x. The n=2 (1122) cuprate (Ln=Pr or Nd) shows a Tc in the 80–90 K range.
Resumo:
The thermal decomposition of lanthanum biscitrato chromium(III) dihydrate has been studied in static air and dynamic argon atmospheres. The complex decomposes in four steps: dehydration, decomposition of the citrate to an intermediate oxycarbonate, formation of LaCrO4(V) from oxycarbonate, and finally decomposition of LaCrO4(V) to LaCrO3. Formation of LaCrCrO4(V) requires the presence of oxygen The decomposition behaviour of a mechanical mixture of lanthanum citrate hydrate and chromium citrate hydrate was compared with that of the citrato complex. Both the starting material and the intermediates were characterized by X-ray diffraction, IR electronic and ESR spectroscopy, surface area and magnetic susceptibility measurements, as well as by chemical analysis. A scheme is proposed for the decomposition of lanthanum biscitrato chromium(III) dihydrate in air. LaCrO3 can be obtained at temperatures as low as 875 K by isothermal decomposition of the complex.