17 resultados para Quebec novels
Resumo:
Salient object detection has become an important task in many image processing applications. The existing approaches exploit background prior and contrast prior to attain state of the art results. In this paper, instead of using background cues, we estimate the foreground regions in an image using objectness proposals and utilize it to obtain smooth and accurate saliency maps. We propose a novel saliency measure called `foreground connectivity' which determines how tightly a pixel or a region is connected to the estimated foreground. We use the values assigned by this measure as foreground weights and integrate these in an optimization framework to obtain the final saliency maps. We extensively evaluate the proposed approach on two benchmark databases and demonstrate that the results obtained are better than the existing state of the art approaches.
Resumo:
The utility of canonical correlation analysis (CCA) for domain adaptation (DA) in the context of multi-view head pose estimation is examined in this work. We consider the three problems studied in 1], where different DA approaches are explored to transfer head pose-related knowledge from an extensively labeled source dataset to a sparsely labeled target set, whose attributes are vastly different from the source. CCA is found to benefit DA for all the three problems, and the use of a covariance profile-based diagonality score (DS) also improves classification performance with respect to a nearest neighbor (NN) classifier.