70 resultados para QUANTUM-WELL WIRES
Resumo:
The photoluminescence study of Fermi-edge singularity (FES) in modulation-doped pseudomorphic AlxGa1-xAs/InyGa1-yAs/GaAs quantum well (QW) heterostructures is presented. In the above QW structures the optical transitions between n = 1 and n = 2 electronic subband to the n = 1 heavy hole subband (E-11 and E-21 transitions, respectively) are observed with FES appearing as a lower energy shoulder to the E-21 transition. The observed FES is attributed to the Fermi wave vector in the first electronic subband under the conditions of population of the second electronic subband. The FES appears at about 10 meV below E-21 transition around 4.2 K. Initially it gets stronger with increasing temperature and becomes a distinct peak at about 20 K. Further increase in temperature quenches FES and reaches the base line at around 40 K.
Resumo:
This paper presents a detailed investigation of the erects of piezoelectricity, spontaneous polarization and charge density on the electronic states and the quasi-Fermi level energy in wurtzite-type semiconductor heterojunctions. This has required a full solution to the coupled Schrodinger-Poisson-Navier model, as a generalization of earlier work on the Schrodinger-Poisson problem. Finite-element-based simulations have been performed on a A1N/GaN quantum well by using both one-step calculation as well as the self-consistent iterative scheme. Results have been provided for field distributions corresponding to cases with zero-displacement boundary conditions and also stress-free boundary conditions. It has been further demonstrated by using four case study examples that a complete self-consistent coupling of electromechanical fields is essential to accurately capture the electromechanical fields and electronic wavefunctions. We have demonstrated that electronic energies can change up to approximately 0.5 eV when comparing partial and complete coupling of electromechanical fields. Similarly, wavefunctions are significantly altered when following a self-consistent procedure as opposed to the partial-coupling case usually considered in literature. Hence, a complete self-consistent procedure is necessary when addressing problems requiring more accurate results on optoelectronic properties of low-dimensional nanostructures compared to those obtainable with conventional methodologies.
Resumo:
We study the thermoelectric power under classically large magnetic field (TPM) in ultrathin films (UFs), quantum wires (QWs) of non-linear optical materials on the basis of a newly formulated electron dispersion law considering the anisotropies of the effective electron masses, the spin-orbit splitting constants and the presence of the crystal field splitting within the framework of k.p formalism. The results of quantum confined III-V compounds form the special cases of our generalized analysis. The TPM has also been studied for quantum confined II-VI, stressed materials, bismuth and carbon nanotubes (CNs) on the basis of respective dispersion relations. It is found taking quantum confined CdGeAs2, InAs, InSb, CdS, stressed n-InSb and Bi that the TPM increases with increasing film thickness and decreasing electron statistics exhibiting quantized nature for all types of quantum confinement. The TPM in CNs exhibits oscillatory dependence with increasing carrier concentration and the signature of the entirely different types of quantum systems are evident from the plots. Besides, under certain special conditions, all the results for all the materials gets simplified to the well-known expression of the TPM for non-degenerate materials having parabolic energy bands, leading to the compatibility test. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, an attempt is made to study the influence of external light waves on the thermoelectric power under strong magnetic field (TPSM) in ultrathin films (UFs), quantum wires (QWs) and quantum dots (QDs) of optoelectronic materials whose unperturbed dispersion relation of the conduction electrons are defined by three and two band models of Kane together with parabolic energy bands on the basis of newly formulated electron dispersion laws in each case. We have plotted the TPSM as functions of film thickness, electron concentration, light intensity and wavelength for UFs, QWs and ODs of InSb, GaAs, Hg1-xCdxTe and In1-xGaxAsyP1-y respectively. It appears from the figures that for UFs, the TPSM increases with increasing thickness in quantum steps, decreases with increasing electron degeneracy exhibiting entirely different types of oscillations and changes with both light intensity and wavelength and these two latter types of plots are the direct signature of light waves on opto-TPSM. For QWs, the opto-TPSM exhibits rectangular oscillations with increasing thickness and shows enhanced spiky oscillations with electron concentration per unit length. For QDs, the opto-TPSM increases with increasing film thickness exhibiting trapezoidal variations which occurs during quantum jumps and the length and breadth of the trapezoids are totally dependent on energy band constants. Under the condition of non-degeneracy, the results of opto-TPSM gets simplified into the well-known form of classical TPSM equation which the function of three constants only and being invariant of the signature of band structure.
Resumo:
We present a simplified theoretical formulation of the Fowler-Nordheim field emission (FNFE) under magnetic quantization and also in quantum wires of optoelectronic materials on the basis of a newly formulated electron dispersion law in the presence of strong electric field within the framework of k.p formalism taking InAs, InSb, GaAs, Hg(1-x)Cd(x)Te and In(1-x)Ga(x) As(y)P(1-y) lattice matched to InP as examples. The FNFE exhibits oscillations with inverse quantizing magnetic field and electron concentration due to SdH effect and increases with increasing electric field. For quantum wires the FNFE increases with increasing film thickness due to the existence van-Hove singularity and the magnitude of the quantum jumps are not of same height indicating the signature of the band structure of the material concerned. The appearance of the humps of the respective curves is due to the redistribution of the electrons among the quantized energy levels when the quantum numbers corresponding to the highest occupied level changes from one fixed value to the others. Although the field current varies in various manners with all the variables in all the limiting cases as evident from all the curves, the rates of variations are totally band-structure dependent. Under certain limiting conditions, all the results as derived in this paper get transformed in to well known Fowler-Nordheim formula. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Quantum Ohmic residual resistance of a thin disordered wire, approximated as a one-dimensional multichannel conductor, is known to scale exponentially with length. This nonadditivity is shown to imply (i) a low-frequency noise-power spectrum proportional to -ln(Ω)/Ω, and (ii) a dispersive capacitative impedance proportional to tanh(√iΩ )/ √iΩ. A deep connection to the quantum Brownian motion with linear dynamical frictional coupling to a harmonic-oscillator bath is pointed out and interpreted in physical terms.
Resumo:
We study power dissipation for systems of multiple quantum wires meeting at a junction, in terms of a current splitting matrix (M) describing the junction. We present a unified framework for studying dissipation for wires with either interacting electrons (i.e., Tomonaga-Luttinger liquid wires with Fermi-liquid leads) or noninteracting electrons. We show that for a given matrix M, the eigenvalues of (MM)-M-T characterize the dissipation, and the eigenvectors identify the combinations of bias voltages which need to be applied to the different wires in order to maximize the dissipation associated with the junction. We use our analysis to propose and study some microscopic models of a dissipative junction which employ the edge states of a quantum Hall liquid. These models realize some specific forms of the M matrix whose entries depends on the tunneling amplitudes between the different edges.
Resumo:
It is now well known that in extreme quantum limit, dominated by the elastic impurity scattering and the concomitant quantum interference, the zero-temperature d.c. resistance of a strictly one-dimensional disordered system is non-additive and non-self-averaging. While these statistical fluctuations may persist in the case of a physically thin wire, they are implicitly and questionably ignored in higher dimensions. In this work, we have re-examined this question. Following an invariant imbedding formulation, we first derive a stochastic differential equation for the complex amplitude reflection coefficient and hence obtain a Fokker-Planck equation for the full probability distribution of resistance for a one-dimensional continuum with a Gaussian white-noise random potential. We then employ the Migdal-Kadanoff type bond moving procedure and derive the d-dimensional generalization of the above probability distribution, or rather the associated cumulant function –‘the free energy’. For d=3, our analysis shows that the dispersion dominates the mobilitly edge phenomena in that (i) a one-parameter B-function depending on the mean conductance only does not exist, (ii) an approximate treatment gives a diffusion-correction involving the second cumulant. It is, however, not clear whether the fluctuations can render the transition at the mobility edge ‘first-order’. We also report some analytical results for the case of the one dimensional system in the presence of a finite electric fiekl. We find a cross-over from the exponential to the power-low length dependence of resistance as the field increases from zero. Also, the distribution of resistance saturates asymptotically to a poissonian form. Most of our analytical results are supported by the recent numerical simulation work reported by some authors.
Resumo:
We analyze aspects of symmetry breaking for Moyal spacetimes within a quantization scheme which preserves the twisted Poincare´ symmetry. Towards this purpose, we develop the Lehmann-Symanzik- Zimmermann (LSZ) approach for Moyal spacetimes. The latter gives a formula for scattering amplitudes on these spacetimes which can be obtained from the corresponding ones on the commutative spacetime. This formula applies in the presence of spontaneous breakdown of symmetries as well. We also derive Goldstone’s theorem on Moyal spacetime. The formalism developed here can be directly applied to the twisted standard model.
Resumo:
We present a new, generic method/model for multi-objective design optimization of laminated composite components using a novel multi-objective optimization algorithm developed on the basis of the Quantum behaved Particle Swarm Optimization (QPSO) paradigm. QPSO is a co-variant of the popular Particle Swarm Optimization (PSO) and has been developed and implemented successfully for the multi-objective design optimization of composites. The problem is formulated with multiple objectives of minimizing weight and the total cost of the composite component to achieve a specified strength. The primary optimization variables are - the number of layers, its stacking sequence (the orientation of the layers) and thickness of each layer. The classical lamination theory is utilized to determine the stresses in the component and the design is evaluated based on three failure criteria; Failure Mechanism based Failure criteria, Maximum stress failure criteria and the Tsai-Wu Failure criteria. The optimization method is validated for a number of different loading configurations - uniaxial, biaxial and bending loads. The design optimization has been carried for both variable stacking sequences as well as fixed standard stacking schemes and a comparative study of the different design configurations evolved has been presented. Also, the performance of QPSO is compared with the conventional PSO.
Resumo:
Many grand unified theories (GUT's) predict non-Abelian monopoles which are sources of non-Abelian (and Abelian) magnetic flux. In the preceding paper, we discussed in detail the topological obstructions to the global implementation of the action of the "unbroken symmetry group" H on a classical test particle in the field of such a monopole. In this paper, the existence of similar topological obstructions to the definition of H action on the fields in such a monopole sector, as well as on the states of a quantum-mechanical test particle in the presence of such fields, are shown in detail. Some subgroups of H which can be globally realized as groups of automorphisms are identified. We also discuss the application of our analysis to the SU(5) GUT and show in particular that the non-Abelian monopoles of that theory break color and electroweak symmetries.
Resumo:
We demonstrate the phenomenon stated in the title, using for illustration a two-dimensional scalar-field model with a triple-well potential {fx837-1}. At the classical level, this system supports static topological solitons with finite energy. Upon quantisation, however, these solitons develop infinite energy, which cannot be renormalised away. Thus this quantised model has no soliton sector, even though classical solitons exist. Finally when the model is extended supersymmetrically by adding a Majorana field, finiteness of the soliton energy is recovered.
Resumo:
A simplified yet analytical approach on few ballistic properties of III-V quantum wire transistor has been presented by considering the band non-parabolicity of the electrons in accordance with Kane's energy band model using the Bohr-Sommerfeld's technique. The confinement of the electrons in the vertical and lateral directions are modeled by an infinite triangular and square well potentials respectively, giving rise to a two dimensional electron confinement. It has been shown that the quantum gate capacitance, the drain currents and the channel conductance in such systems are oscillatory functions of the applied gate and drain voltages at the strong inversion regime. The formation of subbands due to the electrical and structural quantization leads to the discreetness in the characteristics of such 1D ballistic transistors. A comparison has also been sought out between the self-consistent solution of the Poisson's-Schrodinger's equations using numerical techniques and analytical results using Bohr-Sommerfeld's method. The results as derived in this paper for all the energy band models gets simplified to the well known results under certain limiting conditions which forms the mathematical compatibility of our generalized theoretical formalism.
Resumo:
For a dynamically disordered continuum it is found that the exact quantum mechanical mean square displacement 〈x2(t)〉∼t3, for t→∞. A Gaussian white-noise spectrum is assumed for the random potential. The result differs qualitatively from the diffusive behavior well known for the one-band lattice Hamiltonian, and is understandable in terms of the momentum cutoff inherent in the lattice, simulating a "momentum bath."