35 resultados para Pulmonary surfactant
Resumo:
The anionic surfactant dodecyl sulfate (DDS) has been intercalated in an Mg-Al layered double hydroxide (LDH). Monolayer and bilayer arrangements of the alkyl chains of the intercalated surfactant can be engineered by tuning the Al/Mg ratio of the LDH. In both arrangements the anionic headgroup of the surfactant is tethered to the LDH sheets, and consequently translational mobility of the chains is absent. The degrees of freedom of the confined alkyl chains are restricted to changes in conformation. The effects of the arrangement of the intercalated surfactant chains on conformational order and dynamics have been,investigated by spectroscopic measurements and molecular dynamics simulations. Infrared, Raman, and C-13 NMR spectroscopies were used to investigate conformation of the alkyl chains in the monolayer and bilayer arrangements and variable contact time cross-polarization magic angle spinning (VCT CPMAS) NMR measurements to probe molecular motion. The alkyl chains in the monolayer arrangement of the intercalated DDS chains showed considerably greater conformational disorder and faster dynamics as compared to chains in the bilayer arrangement, in spite of the fact that the volume available per chain in the monolayer is smaller than that in the bilayer. Atomistic MD simulations of the two arrangements of the intercalated surfactant were carried out using an isothermal-isobaric ensemble. The simulations are able to reproduce the essential results of the experiment-greater conformational disorder and faster dynamics for the alkyl chains in the monolayer arrangement of the intercalated surfactant. The MD simulations show that these results are a consequence of the fact that the nature of conformational disorder in the two arrangements is different. In the monolayer arrangement the alkyl chains can sustain isolated gauche defects, whereas in the bilayer arrangement gauche conformers occur only as part of a kink a gauche(+) trans gauche(-) sequence.
Resumo:
Six new vesicle-forming, cationic surfactant lipids are synthesized. Four of them contain 'flat' aromatic units at different locations of hydrophobic segments. In order to estimate the influence of aromatic units in the lipid monomer two other surfactant lipids of related structure with n-butyloxy units in the places of aromatic groups were also prepared. Transmission electron microscopy confirmed the vesicular membrane formation from these newly synthesized lipids. DSC or temperature-dependent keto-enol tautomerism of benzoylacetanilide-doped vesicles reveal a remarkable increase in the thermal stability of the membranes formed from aromatic surfactant lipids in contradistinction to their counterparts that contain n-butyloxy units. The enhanced thermal stability originates presumably as a consequence of inter-monomer stacking.
Resumo:
Ethidium bromide is one of the best known DNA intercalator. Upon intercalation inside DNA, the fluorescence due to ethidium bromide gets enhanced by many orders of magnitude. In this paper, we employed ethidium bromide as a probe for studying surfactant-DNA complexation using fluorescence spectroscopy and agarose gel electrophoresis. Surfactants of different charge types and chain lengths were used and the results were compared with that of the related small organic cations or salts under comparable conditions. The cationic surfactants induced destabilization of the ethidium bromide-DNA complex at concentrations in orders of magnitude lower than that of the small organic cations or salts. In contrast however, the anionic surfactants failed to promote any such destabilization of probe-DNA complex. DNA loses its ethidium bromide stainability in the presence of high concentration of cationic surfactant aggregates as revealed from agarose gel electrophoresis experiments. Inclusion of surfactants and other additives into the DNA generally enhanced the DNA double-strand to single strand transition melting temperatures by a few degrees, in a concentration-dependent manner and at high surfactant concentration melting profiles got broadened.
Resumo:
We demonstrate an ultrafast method for the formation of, graphene supported Pt catalysts by the co-reduction of graphene oxide and Pt salt using ethylene glycol under microwave irradiation conditions. Detailed analysis of the mechanism of formation of the hybrids indicates a synergistic co-reduction mechanism whereby the presence of the Pt ions leads to a faster reduction of GO and the presence of the defect sites on the reduced GO serves as anchor points for the heterogeneous nucleation of Pt. The resulting hybrid consists of ultrafine nanoparticles of Pt uniformly distributed on the reduced GO susbtrate. We have shown that the hybrid exhibits good catalytic activity for methanol oxidation and hydrogen conversion reactions. The mechanism is general and applicable for the synthesis of other multifunctional hybrids based on graphene.
Resumo:
Nanostructured materials have attracted considerable interest in recent years due to their properties which differ strongly from their bulk phase and potential applications in nanoscale electronic and optoelectronic devices. Metal oxide nanostructures can be synthesized by variety of different synthesis techniques developed in recent years such as thermal decomposition, sol-gel technique, chemical coprecipitation, hydrothermal process, solvothermal process, spray pyrolysis, polyol process etc. All the above processes go through a tedious synthesis procedure followed by prolonged heat treatment at elevated temperature and are time consuming. In the present work we describe a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant, without the use of any templates The method is simple, inexpensive, and helps one to prepare nanostructures in a very simple way, and in a very short time, measured in minutes. The synthesis procedure employs high quality metalorganic complexes (typically -diketonates) featuring a direct metal-to-oxygen bond in its molecular structure. The complex is dissolved in a suitable solvent, often with a surfactant added, and the solution then subjected to microwave irradiation in a domestic microwave oven operating at 2.45 GHz frequency with power varying from 160-800 W, from a few seconds to a few minutes, leading to the formation of corresponding metal oxides. This method has been used successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with the change of different parameters such as microwave power, irradiation time, appropriate solvent, surfactant type and concentration. Cationic, anionic, nonionic and polymeric surfactants have been used to generate a variety of nanostructures. Even so, to remove the surfactant, there is either no need of heat treatment or a very brief exposure to heat suffices, to yield highly pure and crystalline oxide materials as prepared. By adducting the metal complexes, the shape of the nanostructures can be controlled further. In this manner, very well formed, single-crystalline, hexagonal nanorods and nanotubes of ZnO have been formed. Adducting the zinc complex leads to the formation of tapered ZnO nanorods with a very fine tip, suitable for electron emission applications. Particle size and their monodispersity can be controlled by a suitable choice of a precursor complex, the surfactant, and its concentration. The resulting metal oxide nanostructures have been characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, FTIR spectroscopy, photoluminescence, and electron emission measurements.
Resumo:
We have carried out small-angle X-ray diffraction studies on complexes formed by the anionic polyelectrolytes, namely, sodium salts of double and single stranded (ds and ss) DNA, poly( glutamic acid) ( PGA), poly( acrylic acid) (PAA), and poly( styrene sulfonate) (PSS) with a cationic surfactant system consisting of cetyltrimethylammonium bromide ( CTAB) and sodium 3-hydroxy-2-naphthoate (SHN). All complexes have a two-dimensional (2D) hexagonal structure at low SHN concentrations. DNA-CTAB-SHN complexes exhibit a hexagonal to lamellar transition near the SHN concentration at which CTAB-SHN micelles show a cylinder to bilayer transformation. On the other hand, PGA and PAA complexes form a 2D centered rectangular phase at higher SHN concentrations, and PSS complexes show a primitive rectangular structure. These results provide a striking example of polyion specificity in polyelectrolytesurfactant interactions.
Resumo:
Several surfactant molecules self-assemble in solution to form long, flexible wormlike micelles which get entangled with each other, leading to viscoelastic gel phases. We discuss our recent work on the rheology of such a gel formed in the dilute aqueous solutions of a surfactant CTAT. In the linear rheology regime, the storage modulus G′(ω) and loss modulus G″(ω) have been measured over a wide frequency range. In the nonlinear regime, the shear stress σ shows a plateau as a function of the shear rate math above a certain cutoff shear rate mathc. Under controlled shear rate conditions in the plateau regime, the shear stress and the first normal stress difference show oscillatory time-dependence. The analysis of the measured time series of shear stress and normal stress has been done using several methods incorporating state space reconstruction by embedding of time delay vectors. The analysis shows the existence of a finite correlation dimension and a positive Lyapunov exponent, unambiguously implying that the dynamics of the observed mechanical instability can be described by that of a dynamical system with a strange attractor of dimension varying from 2.4 to 2.9.
Resumo:
Surfactant protein A (SP-A), which is a lung innate immune system component, is known to bind glycolipids present at the cell surface of a mycobacterial pathogen. Lipoarabinomannan (LAM), a component of mycobacterial thick, waxy cell wall, is one of the glycolipid ligands for SP-A. In order to assess binding of synthetic glycolipids with SP-A and the glycosidic linkage preferences for the interaction, beta-arabinofuranoside trisaccharide glycolipids constituted with beta-(1 -> 2), beta-(1 -> 3) and beta-(1 -> 2), beta-(1 -> 5) linkages relevant to LAM were synthesized through chemical glycosylations. The efficacies of synthetic glycolipids to interact with SP-A were assessed by using the surface plasmon resonance (SPR) technique, from which association-dissociation rate constants and equilibrium binding constants were derived. The equilibrium binding constants of the interaction of two constitutionally varying beta-arabinofuranoside glycolipids with SP-A were found to be in the millimolar range. A comparison of the results with few alpha-anomeric arabinofuranoside glycolipids showed that glycolipids with beta-anomeric linkages were having relatively lower equilibrium binding constants than those with alpha-anomeric linkages in binding to the protein, whereas oligosaccharides alone, without lipidic chains, exhibited higher equilibrium binding constants. Further, the synthetic compounds inhibited the growth of mycobacteria and affected sliding motilities of the bacteria, although to an extent relatively lesser than that of synthetic compounds constituted with alpha-anomeric linkages.
Resumo:
Organo-clay was prepared by incorporating different amounts (in terms of CEC, ranging from 134-840 mg of quaternary ammonium cation (QACs) such as hexadecytrimethylammonium bromide (C19H42N]Br) into the montmorillonite clay. Prepared organo-clays are characterized by CHN analyser and XRD to measure the amount of elemental content and interlayer spacing of surfactant modified clay. The batch experiments of sorption of permanganate from aqueous media by organo-clays was studied at different acidic strengths (pH 1-7). The experimental results show that the rate and amount of adsorption of permanganate was higher at lower pH compared to raw montmorillonite. Laboratory fixed bed experiments were conducted to evaluate the breakthrough time and nature of breakthrough curves. The shape of the breakthrough curves shows that the initial cationic surfactant loadings at 1.0 CEC of the clay is enough to enter the permanganate ions in to the interlamellar region of the surfactant modified smectile clays. These fixed bed studies were also applied to quantify the effect of bed-depth and breakthrough time during the uptake of permanganate. Calculation of thermodynamic parameters shows that the sorption of permanganate is spontaneous and follows the first order kinetics.
Resumo:
Cationic surfactants such as dodecyltrimethylammonium bromide (DTAB), tetradecyltrimehtylammonium bromide (TTAB) and hexadecyltrimethylammonium bromide (HTAB); and anionic surfactants such as sodium decyl sulphate (SDeS), sodium dodecyl sulphate (SDS) and sodium tetradecyl sulphate (STDS) have been used to determine their solubility and micellization in ternary eutectic melt (acetamide + urea + ammonium nitrate) at 50 degrees C. We employed the electrical conductivity and the surface tension measurement techniques to determine the critical micelle concentration (CMC). The deviation in the slope of the specific conductance/surface tension against surfactant concentration plots indicated the aggregations of surfactants and hence, their CMC. CMC decreases with increase of alkyl chain length due to the increased van der Waals forces. The calculated increment in Gibb's energy per methylene group for cationic and anionic surfactants is about -6 kJ mol(-1) and -4 kJ mol(-1) respectively. It is found that, the CMCs of the surfactants in the ternary melt are higher than the CMCs of same surfactants in water (similar to 25 degrees C). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A simple, rapid, and surfactant-free synthesis of crystalline copper nanostructures has been carried out through microwave irradiation of a solution of copper acetylacetonate in benzyl alcohol. The structures are found to be stable against oxidation in ambient air for several months. High-resolution electron microscopy (SEM and TEM) reveals that the copper samples comprise nanospheres measuring about 150 nm in diameter, each made of copper nanocrystals similar to 7 nm in extension. The nanocrystals are densely packed into spherical aggregates, the driving force being minimization of surface area and surface energy, and are thus immune to oxidation in ambient air. Such aggregates can also be adherently supported on SiO2 and Al2O3 when these substrates are immersed in the irradiated solution. The air-stable copper nanostructures exhibit surface enhanced Raman scattering, as evidenced by the detection of 4-mercaptobenzoic acid at 10(-6) M concentrations.
Resumo:
We report, strong ultraviolet (UV) emission from ZnO nanoparticle thin film obtained by a green synthesis, where the film is formed by the microwave irradiation of the alcohol solution of the precursor. The deposition is carried out in non-aqueous medium without the use of any surfactant, and the film formation is quick (5 min). The film is uniform comprising of mono-disperse nanoparticles having a narrow size distribution (15-22 nm), and that cover over an entire area (625 mm(2)) of the substrate. The growth rate is comparatively high (30-70 nm/min). It is possible to tune the morphology of the films and the UV emission by varying the process parameters. The growth mechanism is discussed precisely and schematic of the growth process is provided.
Resumo:
We demonstrate a unique shear-induced crystallization phenomenon above the equilibrium freezing temperature (T-K(o)) in weakly swollen isotropic (L-i) and lamellar (L-alpha) mesophases with bilayers formed in a cationic-anionic mixed surfactant system. Synchrotron rheological X-ray diffraction study reveals the crystallization transition to be reversible under shear (i.e., on stopping the shear, the nonequilibrium crystalline phase L-c melts back to the equilibrium mesophase). This is different from the shear-driven crystallization below T-K(o), which is irreversible. Rheological optical observations show that the growth of the crystalline phase occurs through a preordering of the L-i phase to an L-alpha phase induced by shear flow, before the nucleation of the Lc phase. Shear diagram of the L-i phase constructed in the parameter space of shear rate ((gamma)) over dot vs. temperature exhibits L-i -> L-c and L-i -> L-alpha transitions above the equilibrium crystallization temperature (T-K(o)), in addition to the irreversible shear-driven nucleation of L-c in the L-i phase below T-K(o). In addition to revealing a unique class of nonequilibrium phase transition, the present study urges a unique approach toward understanding shear-induced phenomena in concentrated mesophases of mixed amphiphilic systems.
Resumo:
We report large scale deposition of tapered zinc oxide (ZnO) nanorods on Si(100) substrate by using newly designed metal-organic complex of zinc (Zn) as the precursor, and microwave irradiation assisted chemical synthesis as a process. The coatings are uniform and high density ZnO nanorods (similar to 1.5 mu m length) grow over the entire area (625 mm(2)) of the substrate within 1-5 min of microwave irradiation. ZnO coatings obtained by solution phase deposition yield strong UV emission. Variation of the molecular structure/molecular weight of the precursors and surfactants influence the crystallinity, morphology, and optical properties of ZnO coatings. The precursors in addition with the surfactant and the solvent are widely used to obtain desired coating on any substrate. The growth mechanism and the schematics of the growth process of ZnO coatings on Si(100) are discussed. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
Various morphologies of Eu3+ activated gadolinium oxide have been prepared by hydrothermal method using hexadecylamine (HDA) as surfactant at different experimental conditions. The powder X-ray diffraction studies reveal as-formed product is hexagonal Gd(OH)(3):Eu3+ phase and subsequent heat treatment at 350 and 600 degrees C transforms to monoclinic GdOOH:Eu3+ and cubic Gd2O3:Eu3+ phases respectively. SEM pictures of without surfactant show irregular shaped rods along with flakes. However, in the presence of HDA surfactant, the particles are converted into rods of various sizes. The temperature dependent morphological evolution of Gd2O3:Eu3+ without and with HDA surfactant is studied. TEM micrographs of Gd(OH)(3):Eu3+ sample with HDA confirms smooth nanorods with various diameters in the range 20-100 nm. FTIR studies reveal that HDA surfactant plays an important role in conversion of cubic to hexagonal phases. Among these three phases, cubic phase Gd2O3:Eu3+ (lambda(ex) = 254 nm) show red emission at 612 nm corresponding to D-5(0)-> F-7(2) and is more efficient host than the monoclinic counterpart. The band gap for hexagonal Gd(OH)(3):Eu3+ is more when compared to monoclinic GdOOH:Eu3+ and cubic Gd2O3:Eu3+. (C) 2013 Elsevier B. V. All rights reserved.