32 resultados para Psychological adaptation
Resumo:
Peptidase N (PepN), the sole M1 family member in Escherichia coli, displays broad substrate specificity and modulates stress responses: it lowers resistance to sodium salicylate (NaSal)-induced stress but is required during nutritional downshift and high temperature (NDHT) stress. The expression of PepN does not significantly change during different growth phases in LB or NaSal-induced stress; however, PepN amounts are lower during NDHT stress. To gain mechanistic insights on the roles of catalytic activity of PepN in modulating these two stress responses, alanine mutants of PepN replacing E264 (GAMEN motif) and E298 (HEXXH motif) were generated. There are no major structural changes between purified wild type (WT) and mutant proteins, which are catalytically inactive. Importantly, growth profiles of Delta pepN upon expression of WT or mutant proteins demonstrated the importance of catalytic activity during NDHT but not NaSal-induced stress. Further fluorescamine reactivity studies demonstrated that the catalytic activity of PepN is required to generate higher intracellular amounts of free N-terminal amino acids; consequently, the lower growth of Delta pepN during NDHT stress increases with high amounts of casamino acids. Together, this study sheds insights on the expression and functional roles of the catalytic activity of PepN during adaptation to NDHT stress. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
Since the days of Digital Subscriber Links(DSL), Time Domain Equalizers(TEQ's) have been used to combat time dispersive channels in Multicarrier Systems. In this paper, we propose computationally inexpensive techniques to recompute TEQ weights in the presence of changes in the channel, especially over fast fading channels. The techniques use no extra information except the perturbation itself, and provide excellent approximations to the new TEQ weights. The proposed adaptation techniques are shown to perform admirably well for small changes in channels for OFDM systems.
Resumo:
Multi-view head-pose estimation in low-resolution, dynamic scenes is difficult due to blurred facial appearance and perspective changes as targets move around freely in the environment. Under these conditions, acquiring sufficient training examples to learn the dynamic relationship between position, face appearance and head-pose can be very expensive. Instead, a transfer learning approach is proposed in this work. Upon learning a weighted-distance function from many examples where the target position is fixed, we adapt these weights to the scenario where target positions are varying. The adaptation framework incorporates reliability of the different face regions for pose estimation under positional variation, by transforming the target appearance to a canonical appearance corresponding to a reference scene location. Experimental results confirm effectiveness of the proposed approach, which outperforms state-of-the-art by 9.5% under relevant conditions. To aid further research on this topic, we also make DPOSE- a dynamic, multi-view head-pose dataset with ground-truth publicly available with this paper.
Resumo:
Orthogonal frequency-division multiple access (OFDMA) systems divide the available bandwidth into orthogonal subchannels and exploit multiuser diversity and frequency selectivity to achieve high spectral efficiencies. However, they require a significant amount of channel state feedback for scheduling and rate adaptation and are sensitive to feedback delays. We develop a comprehensive analysis for OFDMA system throughput in the presence of feedback delays as a function of the feedback scheme, frequency-domain scheduler, and rate adaptation rule. Also derived are expressions for the outage probability, which captures the inability of a subchannel to successfully carry data due to the feedback scheme or feedback delays. Our model encompasses the popular best-n and threshold-based feedback schemes and the greedy, proportional fair, and round-robin schedulers that cover a wide range of throughput versus fairness tradeoff. It helps quantify the different robustness of the schedulers to feedback overhead and delays. Even at low vehicular speeds, it shows that small feedback delays markedly degrade the throughput and increase the outage probability. Further, given the feedback delay, the throughput degradation depends primarily on the feedback overhead and not on the feedback scheme itself. We also show how to optimize the rate adaptation thresholds as a function of feedback delay.
Resumo:
An opportunistic, rate-adaptive system exploits multi-user diversity by selecting the best node, which has the highest channel power gain, and adapting the data rate to selected node's channel gain. Since channel knowledge is local to a node, we propose using a distributed, low-feedback timer backoff scheme to select the best node. It uses a mapping that maps the channel gain, or, in general, a real-valued metric, to a timer value. The mapping is such that timers of nodes with higher metrics expire earlier. Our goal is to maximize the system throughput when rate adaptation is discrete, as is the case in practice. To improve throughput, we use a pragmatic selection policy, in which even a node other than the best node can be selected. We derive several novel, insightful results about the optimal mapping and develop an algorithm to compute it. These results bring out the inter-relationship between the discrete rate adaptation rule, optimal mapping, and selection policy. We also extensively benchmark the performance of the optimal mapping with several timer and opportunistic multiple access schemes considered in the literature, and demonstrate that the developed scheme is effective in many regimes of interest.
Resumo:
Orthogonal frequency division multiple access (OFDMA) systems exploit multiuser diversity and frequency-selectivity to achieve high spectral efficiencies. However, they require considerable feedback for scheduling and rate adaptation, and are sensitive to feedback delays. We develop a comprehensive analysis of the OFDMA system throughput as a function of the feedback scheme, frequency-domain scheduler, and discrete rate adaptation rule in the presence of feedback delays. We analyze the popular best-n and threshold-based feedback schemes. We show that for both the greedy and round-robin schedulers, the throughput degradation, given a feedback delay, depends primarily on the fraction of feedback reduced by the feedback scheme and not the feedback scheme itself. Even small feedback delays at low vehicular speeds are shown to significantly degrade the throughput. We also show that optimizing the link adaptation thresholds as a function of the feedback delay can effectively counteract the detrimental effect of delays.
Resumo:
Transmit antenna selection (AS) is a popular, low hardware complexity technique that improves the performance of an underlay cognitive radio system, in which a secondary transmitter can transmit when the primary is on but under tight constraints on the interference it causes to the primary. The underlay interference constraint fundamentally changes the criterion used to select the antenna because the channel gains to the secondary and primary receivers must be both taken into account. We develop a novel and optimal joint AS and transmit power adaptation policy that minimizes a Chernoff upper bound on the symbol error probability (SEP) at the secondary receiver subject to an average transmit power constraint and an average primary interference constraint. Explicit expressions for the optimal antenna and power are provided in terms of the channel gains to the primary and secondary receivers. The SEP of the optimal policy is at least an order of magnitude lower than that achieved by several ad hoc selection rules proposed in the literature and even the optimal antenna selection rule for the case where the transmit power is either zero or a fixed value.
Resumo:
In contemporary wideband orthogonal frequency division multiplexing (OFDM) systems, such as Long Term Evolution (LTE) and WiMAX, different subcarriers over which a codeword is transmitted may experience different signal-to-noise-ratios (SNRs). Thus, adaptive modulation and coding (AMC) in these systems is driven by a vector of subcarrier SNRs experienced by the codeword, and is more involved. Exponential effective SNR mapping (EESM) simplifies the problem by mapping this vector into a single equivalent fiat-fading SNR. Analysis of AMC using EESM is challenging owing to its non-linear nature and its dependence on the modulation and coding scheme. We first propose a novel statistical model for the EESM, which is based on the Beta distribution. It is motivated by the central limit approximation for random variables with a finite support. It is simpler and as accurate as the more involved ad hoc models proposed earlier. Using it, we develop novel expressions for the throughput of a point-to-point OFDM link with multi-antenna diversity that uses EESM for AMC. We then analyze a general, multi-cell OFDM deployment with co-channel interference for various frequency-domain schedulers. Extensive results based on LTE and WiMAX are presented to verify the model and analysis, and gain new insights.
Resumo:
The performance of an underlay cognitive radio (CR) system, which can transmit when the primary is on, is curtailed by tight constraints on the interference it can cause to the primary receiver. Transmit antenna selection (AS) improves the performance of underlay CR by exploiting spatial diversity but with less hardware. However, the selected antenna and its transmit power now both depend on the channel gains to the secondary and primary receivers. We develop a novel Chernoffbound based optimal AS and power adaptation (CBBOASPA) policy that minimizes an upper bound on the symbol error probability (SEP) at the secondary receiver, subject to constraints on the average transmit power and the average interference to the primary. The optimal antenna and its power are presented in an insightful closed form in terms of the channel gains. We then analyze the SEP of CBBOASPA. Extensive benchmarking shows that the SEP of CBBOASPA for both MPSK and MQAM is one to two orders of magnitude lower than several ad hoc AS policies and even optimal AS with on-off power control.
Resumo:
Significance: The bi-domain protein tyrosine phosphatases (PTPs) exemplify functional evolution in signaling proteins for optimal spatiotemporal signal transduction. Bi-domain PTPs are products of gene duplication. The catalytic activity, however, is often localized to one PTP domain. The inactive PTP domain adopts multiple functional roles. These include modulation of catalytic activity, substrate specificity, and stability of the bi-domain enzyme. In some cases, the inactive PTP domain is a receptor for redox stimuli. Since multiple bi-domain PTPs are concurrently active in related cellular pathways, a stringent regulatory mechanism and selective cross-talk is essential to ensure fidelity in signal transduction. Recent Advances: The inactive PTP domain is an activator for the catalytic PTP domain in some cases, whereas it reduces catalytic activity in other bi-domain PTPs. The relative orientation of the two domains provides a conformational rationale for this regulatory mechanism. Recent structural and biochemical data reveal that these PTP domains participate in substrate recruitment. The inactive PTP domain has also been demonstrated to undergo substantial conformational rearrangement and oligomerization under oxidative stress. Critical Issues and Future Directions: The role of the inactive PTP domain in coupling environmental stimuli with catalytic activity needs to be further examined. Another aspect that merits attention is the role of this domain in substrate recruitment. These aspects have been poorly characterized in vivo. These lacunae currently restrict our understanding of neo-functionalization of the inactive PTP domain in the bi-domain enzyme. It appears likely that more data from these research themes could form the basis for understanding the fidelity in intracellular signal transduction.
Resumo:
To combine the advantages of both stability and optimality-based designs, a single network adaptive critic (SNAC) aided nonlinear dynamic inversion approach is presented in this paper. Here, the gains of a dynamic inversion controller are selected in such a way that the resulting controller behaves very close to a pre-synthesized SNAC controller in the output regulation sense. Because SNAC is based on optimal control theory, it makes the dynamic inversion controller operate nearly optimal. More important, it retains the two major benefits of dynamic inversion, namely (i) a closed-form expression of the controller and (ii) easy scalability to command tracking applications without knowing the reference commands a priori. An extended architecture is also presented in this paper that adapts online to system modeling and inversion errors, as well as reduced control effectiveness, thereby leading to enhanced robustness. The strengths of this hybrid method of applying SNAC to optimize an nonlinear dynamic inversion controller is demonstrated by considering a benchmark problem in robotics, that is, a two-link robotic manipulator system. Copyright (C) 2013 John Wiley & Sons, Ltd.
Resumo:
In contemporary orthogonal frequency division multiplexing (OFDM) systems, such as Long Term Evolution (LTE), LTE-Advanced, and WiMAX, a codeword is transmitted over a group of subcarriers. Since different subcarriers see different channel gains in frequency-selective channels, the modulation and coding scheme (MCS) of the codeword must be selected based on the vector of signal-to-noise-ratios (SNRs) of these subcarriers. Exponential effective SNR mapping (EESM) maps the vector of SNRs into an equivalent flat-fading SNR, and is widely used to simplify this problem. We develop a new analytical framework to characterize the throughput of EESM-based rate adaptation in such wideband channels in the presence of feedback delays. We derive a novel accurate approximation for the throughput as a function of feedback delay. We also propose a novel bivariate gamma distribution to model the time evolution of EESM between the times of estimation and data transmission, which facilitates the analysis. These are then generalized to a multi-cell, multi-user scenario with various frequency-domain schedulers. Unlike prior work, most of which is simulation-based, our framework encompasses both correlated and independent subcarriers and various multiple antenna diversity modes; it is accurate over a wide range of delays.
Resumo:
In a system with energy harvesting (EH) nodes, the design focus shifts from minimizing energy consumption by infrequently transmitting less information to making the best use of available energy to efficiently deliver data while adhering to the fundamental energy neutrality constraint. We address the problem of maximizing the throughput of a system consisting of rate-adaptive EH nodes that transmit to a destination. Unlike related literature, we focus on the practically important discrete-rate adaptation model. First, for a single EH node, we propose a discrete-rate adaptation rule and prove its optimality for a general class of stationary and ergodic EH and fading processes. We then study a general system with multiple EH nodes in which one is opportunistically selected to transmit. We first derive a novel and throughput-optimal joint selection and rate adaptation rule (TOJSRA) when the nodes are subject to a weaker average power constraint. We then propose a novel rule for a multi-EH node system that is based on TOJSRA, and we prove its optimality for stationary and ergodic EH and fading processes. We also model the various energy overheads of the EH nodes and characterize their effect on the adaptation policy and the system throughput.
Resumo:
Availability of producer gas engines at MW being limited necessitates to adapt engine from natural gas operation. The present work focus on the development of necessary kit for adapting a 12 cylinder lean burn turbo-charged natural gas engine rated at 900 kWe (Waukesha make VHP5904LTD) to operate on producer and set up an appropriate capacity biomass gasification system for grid linked power generation in Thailand. The overall plant configuration had fuel processing, drying, reactor, cooling and cleaning system, water treatment, engine generator and power evacuation. The overall project is designed for evacuation of 1.5 MWe power to the state grid and had 2 gasification system with the above configuration and 3 engines. Two gasification system each designed for about 1100 kg/hr of woody biomass was connected to the engine using a producer gas carburetor for the necessary Air to fuel ratio control. In the use of PG to fuel IC engines, it has been recognized that the engine response will differ as compared to the response with conventional fueled operation due to the differences in the thermo-physical properties of PG. On fuelling a conventional engine with PG, power de-rating can be expected due to the lower calorific value (LCV), lower adiabatic flame temperature (AFT) and the lower than unity product to reactant more ratio. Further the A/F ratio for producer gas is about 1/10th that of natural gas and requires a different carburetor for engine operation. The research involved in developing a carburetor for varying load conditions. The patented carburetor is based on area ratio control, consisting of a zero pressure regulator and a separate gas and air line along with a mixing zone. The 95 litre engine at 1000 rpm has an electrical efficiency of 33.5 % with a heat input of 2.62 MW. Each engine had two carburetors designed for producer gas flow each capable of handling about 1200 m3/hr in order to provide similar engine heat input at a lower conversion efficiency. Cold flow studies simulating the engine carburetion system results showed that the A/F was maintained in the range of 1.3 +/- 0.1 over the entire flow range. Initially, the gasification system was tested using woody biomass and the gas composition was found to be CO 15 +/- 1.5 % H-2 22 +/- 2% CH4 2.2 +/- 0.5 CO2 11.25 +/- 1.4 % and rest N-2, with the calorific value in the range of 5.0 MJ/kg. After initial trials on the engine to fine tune the control system and adjust various engine operating parameter a peak load of 800 kWe was achieved, while a stable operating conditions was found to be at 750 kWe which is nearly 85 % of the natural gas rating. The specific fuel consumption was found to be 0.9 kg of biomass per kWh.