79 resultados para Protein Inhibitors of Activated STAT
Resumo:
We demonstrate the presence of nonstructural protein 1 (NS1)-specific antibodies in a significant proportion of convalescent-phase human serum samples obtained from a cohort in an area where Japanese encephalitis virus (JEV) is endemic. Sera containing antibodies to NS1 but not those with antibodies to other JEV proteins, such as envelope, brought about complement-mediated lysis of JEV-infected BHK-21 cells. Target cells infected with a recombinant poxvirus expressing JEV NS1 on the cell surface confirmed the NS1 specificity of cytolytic antibodies. Mouse anti-NS1 cytolytic sera caused a complement-dependent reduction in virus output from infected human cells, demonstrating their important role in viral control. Antibodies elicited by JEV NS1 did not cross lyse West Nile virus- or dengue virus-infected cells despite immunoprecipitating the NS1 proteins of these related flaviviruses. Additionally, JEV NS1 failed to bind complement factor H, in contrast to NS1 of West Nile virus, suggesting that the NS1 proteins of different flaviviruses have distinctly different mechanisms for interacting with the host. Our results also point to an important role for JEV NS1-specific human immune responses in protection against JE and provide a strong case for inclusion of the NS1 protein in next generation of JEV vaccines.
Resumo:
STOAT has been extensively used for the dynamic simulation of an activated sludge based wastewater treatment plant in the Titagarh Sewage Treatment Plant, near Kolkata, India. Some alternative schemes were suggested. Different schemes were compared for the removal of Total Suspended Solids (TSS), b-COD, ammonia, nitrates etc. A combination of IAWQ#1 module with the Takacs module gave best results for the existing scenarios of the Titagarh Sewage Treatment Plant. The modified Bardenpho process was found most effective for reducing the mean b-COD level to as low as 31.4 mg/l, while the mean TSS level was as high as 100.98 mg/l as compared to the mean levels of TSS (92 62 mg/l) and b-COD (92.0 mg/l) in the existing plant. Scheme 2 gave a better scenario for the mean TSS level bringing it down to a mean value of 0.4 mg/l, but a higher mean value for the b-COD level at 54.89 mg/l. The Scheme Final could reduce the mean TSS level to 2.9 mg/l and the mean b-COD level to as low as 38.8 mg/l. The Final Scheme looks to be a technically viable scheme with respect to the overall effluent quality for the plant. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Alum-impregnated activated alumina (AIAA) was investigated in the present work as an adsorbent for the removal of As(V) from water by batch mode. Adsorption study at different pH values shows that the efficiency of AIAA is much higher than as such activated alumina and is suitable for treatment of drinking water. The adsorption isotherm experiments indicated that the uptake of As(V) increased with increasing As(V) concentration from 1 to 25 mg/l and followed Langmuir-type adsorption isotherm. Speciation diagram shows that in the pH range of 2.8–11.5, arsenate predominantly exists as H2AsO4− and HAsO42− species and hence it is presumed that these are the major species being adsorbed on the surface of AIAA. Intraparticle diffusion and kinetic studies revealed that adsorption of As(V) was due to physical adsorption as well as through intraparticle diffusion. Effect of interfering ions revealed that As(V) sorption is strongly influenced by the presence of phosphate ion. The presence of arsenic on AIAA is depicted from zeta potential measurement, scanning electron microscopy (SEM) and energy-dispersive analysis of X-ray (EDAX) mapping study. Alum-impregnated activated alumina successfully removed As(V) to below 40 ppb (within the permissible limit set by WHO) from water, when the initial concentration of As(V) is 10 mg/l.
Resumo:
We report the backbone chemical shift assignments of the acyl-acyl carrier protein (ACP) intermediates of the fatty acid biosynthesis pathway of Plasmodium falciparum. The acyl-ACP intermediates butyryl (C4), -octanoyl (C8), -decanoyl (C10), -dodecanoyl (C12) and -tetradecanoyl (C14)-ACPs display marked changes in backbone HN, Cα and Cβ chemical shifts as a result of acyl chain insertion into the hydrophobic core. Chemical shift changes cast light on the mechanism of expansion of the acyl carrier protein core.
Resumo:
Not all elastoidin samples from different species of sharks show a high content of tryptophan in contrast to one specimen from an unidentified species examined in our earlier study. There may be considerable species-dependent variation in tryptophan content and analytical artefacts may have occurred. Available analyses for tyrosine in different specimens of fibres also suggest the possibility that the variation in tyrosine content is also species-dependent. Elastoidin, from Galeoscerdo cuveir (Tiger Shark) and another unidentified species, on treatment with formic acid yielded three fractions A,B and C. On the basis of analytical data it appears that specimens of elastoidin containing no (or little) tryptophan may yield fraction B through the solubilization of fraction A by formic acid. C fractions from two specimens of fibres were collagenous in nature. C fractions have been further purified in this study by charcoal treatment which removes a tyrosine-rich contaminant, to yield collagens with only approx. 2–4 residues of tyrosine per assumed mol. wt. of 360000. In the collagen from the unidentified species glucose and galactose were present in the ratio of 2:5; some glucosamine was also present.
Resumo:
Experiments were conducted in cement cisterns to find out the effect of adding different dosages of activated sludge on fish growth and plankton production. Three dosages of sludge,viz., 62·5 gm., 125 gm. and 250 gm. per 240 litres of water were used. Fingerlings ofCyprinus carpio, Cirrhina mrigala andCatla catla responded positively,C. mrigala showing maximum growth. The results indicate that the sludge has a direct influence on increasing growth of fish and production of plankton due to the release of nutrients into the water. The increase in plankton content stops after about 30 days. When greater quantities of sludge were added in the cisterns, fish mortality took place.
Resumo:
Electronic transport in the high temperature paramagnetic regime of the colossal magnetoresistive oxides, La(1-x)A(x)MnO(3), A=Ca, Sr, Ba, x similar or equal to 0.1-0.3, has been investigated using resistivity measurements. The main motivation for this work is to relook into the actual magnitude of the activation energy for transport in a number of manganites and study its variation as a function of hole doping (x), average A-site cation radius (< r(A)>), cationic disorder (sigma(2)) and strain (epsilon(zz)). We show that contrary to current practice, the description of a single activation energy in this phase is not entirely accurate. Our results clearly reveal a strong dependence of the activation energy on the hole doping as well as disorder. Comparing the results across different substituent species with different < r(A)> reveals the importance of sigma(2) as a metric to qualify any analysis based on (r(A)). (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The 2.3 kb BamHI fragment from the colitis bacteriophage DNA was transcribed and translated into a 20 kd structural protein P6, in a coupled transcription-translation system derived from Escherichia coli. This protein was expressed in vivo by the 2.3 kb DNA cloned in pBR322. The gene with the regulatory elements for this protein was located on the 680 bp AvaII fragment of the insert DNA. It hybridized with two RNAs of sizes 520 and 1630 nucleotides indicating that both are messengers for the 20 kd protein. Dot-blot hybridization showed that the transcripts for P6 reached a maximum level at 12 min after phage infection.
Resumo:
The significance of two interface arginine residues on the structural integrity of an obligatory dimeric enzyme thymidylate synthase (TS) from Lactobacillus casei was investigated by thermal and chemical denaturation. While the R178F mutant showed apparent stability to thermal denaturation by its decreased tendency to aggregate, the Tm of the R218K mutant was lowered by 5 degrees C. Equilibrium denaturation studies in guanidinium chloride (GdmCl) and urea indicate that in both the mutants, replacement of Arg residues results in more labile quaternary and tertiary interactions. Circular dichroism studies in aqueous buffer suggest that the protein interior in R218K may be less well-packed as compared to the wild type protein. The results emphasize that quaternary interactions may influence the stability of the tertiary fold of TS. The amino acid replacements also lead to notable alteration in the ability of the unfolding intermediate of TS to aggregate. The aggregated state of partially unfolded intermediate in the R178F mutant is stable over a narrower range of denaturant concentrations. In contrast, there is an exaggerated tendency on the part of R218K to aggregate in intermediate concentrations of the denaturant. The 3 A crystal structure of the R178F mutant reveals no major structural change as a consequence of amino acid substitution. The results may be rationalized in terms of mutational effects on both the folded and unfolded state of the protein. Site specific amino acid substitutions are useful in identifying specific regions of TS involved in association of non-native protein structures.
Resumo:
This paper discusses the optical properties of single-layer TiO2 films deposited using an activated reactive evaporation process. The combined effects of substrate temperature (in the range 70–200 °C) and discharge currents (0–400 mA) on refractive index, extinction coefficient and packing density of these films are investigated. Significant changes in refractive index values have been observed with increases in substrate temperature and discharge current. The change in refractive index is correlated with the variation in packing density. The variation in extinction coefficient was reduced using the combined effects of substrate temperature and discharge currents. A comparison with films deposited in neutral oxygen has also been made.
Resumo:
Plant seeds usually have high concentrations of proteinase and amylase inhibitors. These inhibitors exhibit a wide range of specificity, stability and oligomeric structure. In this communication, we report analysis of sequences that show statistically significant similarity to the double-headed alpha-amylase/trypsin inhibitor of ragi (Eleusine coracana). Our aim is to understand their evolutionary and structural features. The 14 sequences of this family that are available in the SWISSPROT database form three evolutionarily distinct branches. The branches relate to enzyme specificities and also probably to the oligomeric state of the proteins and not to the botanical class of the plant from which the enzymes are derived. This suggests that the enzyme specificities of the inhibitors evolved before the divergence of commercially cultivated cereals. The inhibitor sequences have three regions that display periodicity in hydrophobicity. It is likely that this feature reflects extended secondary structure in these segments. One of the most variable regions of the polypeptide corresponds to a loop, which is most probably exposed in the native structure of the inhibitors and is responsible for the inhibitory property.
Resumo:
Sulfur dioxide in aqueous solutions at low pH levels exists both in molecular SO2(aq) and in hydrolyzed ionic form HSO3-. Experiments indicate that only HSO3- is the reacting species in the oxidation catalyzed by activated carbon, while SO2(aq) deactivates by competing with HSO3 for the active sites of the catalyst particles. A mechanism is proposed and a rate model is developed that also accounts for the effect of sulfuric acid (product of the oxidation) on the solubility of sulfur dioxide. It predicts first order in HSO3-, half order in dissolved oxygen, and a linear deactivation effect of SO2(aq), which are confirmed by experimental data. The deactivation reaches a constant level corresponding to saturation of the active sites by SO2(aq). Activation energy for the oxidation is 93.55 kJ mol(-1) and for deactivation is 21.4 kJ mol(-1).
Resumo:
DNA gyrase is the target of two plasmid-encoded toxins CcdB and microcin B17, which ensure plasmid maintenance. These proteins stabilize gyrase-DNA covalent complexes leading to double-strand breaks in the genome. In contrast, the physiological role of chromosomally encoded inhibitor of DNA gyrase (Gyrl) in Escherichia coli is unclear and its mechanism of inhibition has not been established. We demonstrate that the mode of inhibition of GyrI is distinct from all other gyrase inhibitors. It inhibits DNA gyrase prior to, or at the step of, binding of DNA by the enzyme. Gyrl reduces intrinsic as well as toxin-stabilized gyrase-DNA covalent complexes. Furthermore, Gyri reduces microcin B17-mediated double-strand breaks in vivo, imparting protection to the cells against the toxin, substantiating the in vitro results. Thus, Gyrl is an antidote to DNA gyrase-specific proteinaceous poisons encoded by plasmid addiction systems.
Resumo:
Parkinsons disease (PD) is the second most prevalent progressive neurological disorder commonly associated with impaired mitochondrial function in dopaminergic neurons. Although familial PD is multifactorial in nature, a recent genetic screen involving PD patients identified two mitochondrial Hsp70 variants (P509S and R126W) that are suggested in PD pathogenesis. However, molecular mechanisms underlying how mtHsp70 PD variants are centrally involved in PD progression is totally elusive. In this article, we provide mechanistic insights into the mitochondrial dysfunction associated with human mtHsp70 PD variants. Biochemically, the R126W variant showed severely compromised protein stability and was found highly susceptible to aggregation at physiological conditions. Strikingly, on the other hand, the P509S variant exhibits significantly enhanced interaction with J-protein cochaperones involved in folding and import machinery, thus altering the overall regulation of chaperone-mediated folding cycle and protein homeostasis. To assess the impact of mtHsp70 PD mutations at the cellular level, we developed yeast as a model system by making analogous mutations in Ssc1 ortholog. Interestingly, PD mutations in yeast (R103W and P486S) exhibit multiple in vivo phenotypes, which are associated with omitochondrial dysfunction', including compromised growth, impairment in protein translocation, reduced functional mitochondrial mass, mitochondrial DNA loss, respiratory incompetency and increased susceptibility to oxidative stress. In addition to that, R103W protein is prone to aggregate in vivo due to reduced stability, whereas P486S showed enhanced interaction with J-proteins, thus remarkably recapitulating the cellular defects that are observed in human PD variants. Taken together, our findings provide evidence in favor of direct involvement of mtHsp70 as a susceptibility factor in PD.