41 resultados para Protective antigen
Resumo:
Mycobacterium tuberculosis readily activates both CD4+ and Vdelta2+ gammadelta T cells. Despite similarity in function, these T-cell subsets differ in the antigens they recognize and the manners in which these antigens are presented by M. tuberculosis-infected monocytes. We investigated mechanisms of antigen processing of M. tuberculosis antigens to human CD4 and gammadelta T cells by monocytes. Initial uptake of M. tuberculosis bacilli and subsequent processing were required for efficient presentation not only to CD4 T cells but also to Vdelta2+ gammadelta T cells. For gammadelta T cells, recognition of M. tuberculosis-infected monocytes was dependent on Vdelta2+ T-cell-receptor expression. Recognition of M. tuberculosis antigens by CD4+ T cells was restricted by the class II major histocompatibility complex molecule HLA-DR. Processing of M. tuberculosis bacilli for Vdelta2+ gammadelta T cells was inhibitable by Brefeldin A, whereas processing of soluble mycobacterial antigens for gammadelta T cells was not sensitive to Brefeldin A. Processing of M. tuberculosis bacilli for CD4+ T cells was unaffected by Brefeldin A. Lysosomotropic agents such as chloroquine and ammonium chloride did not affect the processing of M. tuberculosis bacilli for CD4+ and gammadelta T cells. In contrast, both inhibitors blocked processing of soluble mycobacterial antigens for CD4+ T cells. Chloroquine and ammonium chloride insensitivity of processing of M. tuberculosis bacilli was not dependent on the viability of the bacteria, since processing of both formaldehyde-fixed dead bacteria and mycobacterial antigens covalently coupled to latex beads was chloroquine insensitive. Thus, the manner in which mycobacterial antigens were taken up by monocytes (particulate versus soluble) influenced the antigen processing pathway for CD4+ and gammadelta T cells.
Resumo:
The relay hypothesis [R. Nayak, S. Mitra-Kaushik, M.S. Shaila, Perpetuation of immunological memory: a relay hypothesis, Immunology 102 (2001) 387-395] was earlier proposed to explain perpetuation of immunological memory without requiring long lived memory cells or persisting antigen. This hypothesis envisaged cycles of interaction and proliferation of complementary idiotypic B cells (Burnet cells) and anti-idiotypic B cells (Jerne cells) as the primary reason for perpetuation of immunological memory. The presence of pepti-domimics of antigen in anti-idiotypic antibody and their presentation to antigen specific T cells was postulated to be primary reason for perpetuation of T cell memory. Using a viral hemagglutinin as a model, in this work, we demonstrate the presence of peptidomimics in the variable region of ail anti-idiotypic antibody capable of functionally mimicking the antigen derived peptides. A CD8(+) CTL clone was generated against the hemagglutinin protein which specifically responds to either peptidomimic synthesizing cells or peptidomimic pulsed antigen presenting cells. Thus, it appears reasonable that a population of activated antigen specific T cells is maintained in the body by presentation of peptidomimic through Jerne cells and other antigen presenting cells long after immunization. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Thermodynamic analysis of carbohydrate binding by Artocarpus integrifolia (jackfruit) agglutinin (jacalin) shows that, among monosaccharides, Me alpha GalNAc (methyl-alpha-N-acetylgalactosamine) is the strongest binding ligand. Despite its strong affinity for Me alpha GalNAc and Me alpha Gal, the lectin binds very poorly when Gal and GalNAc are in alpha-linkage with other sugars such as in A- and B-blood-group trisaccharides, Gal alpha 1-3Gal and Gal alpha 1-4Gal. These binding properties are explained by considering the thermodynamic parameters in conjunction with the minimum energy conformations of these sugars. It binds to Gal beta 1-3GalNAc alpha Me with 2800-fold stronger affinity over Gal beta 1-3GalNAc beta Me. It does not bind to asialo-GM1 (monosialoganglioside) oligosaccharide. Moreover, it binds to Gal beta 1-3GalNAc alpha Ser, the authentic T (Thomsen-Friedenreich)-antigen, with about 2.5-fold greater affinity as compared with Gal beta 1-3GalNAc. Asialoglycophorin A was found to be about 169,333 times stronger an inhibitor than Gal beta 1-3GalNAc. The present study thus reveals the exquisite specificity of A. integrifolia lectin for the T-antigen. Appreciable binding of disaccharides Glc beta 1-3GalNAc and GlcNAc beta 1-3Gal and the very poor binding of beta-linked disaccharides, which instead of Gal and GalNAc contain other sugars at the reducing end, underscore the important contribution made by Gal and GalNAc at the reducing end for recognition by the lectin. The ligand-structure-dependent alterations of the c.d. spectrum in the tertiary structural region of the protein allows the placement of various sugar units in the combining region of the lectin. These studies suggest that the primary subsite (subsite A) can accommodate only Gal or GalNAc or alpha-linked Gal or GalNAc, whereas the secondary subsite (subsite B) can associate either with GalNAc beta Me or Gal beta Me. Considering these factors a likely arrangement for various disaccharides in the binding site of the lectin is proposed. Its exquisite specificity for the authentic T-antigen, Gal beta 1-3GalNAc alpha Ser, together with its virtual non-binding to A- and B-blood-group antigens, Gal beta 1-3GalNAc beta Me and asialo-GM1 should make A. integrifolia lectin a valuable probe for monitoring the expression of T-antigen on cell surfaces.
Resumo:
Pregnancy is a transient immuno-compromised condition which has evolved to avoid the immune rejection of the fetus by the maternal immune system. The altered immune response of the pregnant female leads to increased susceptibility to invading pathogens, resulting in abortion and congenital defects of the fetus and a subnormal response to vaccination. Active vaccination during pregnancy may lead to abortion induced by heightened cell mediated immune response. In this study, we have administered the highly attenuated vaccine strain delta pmrG-HM-D (DV-STM-07) in female mice before the onset of pregnancy and followed the immune reaction against challenge with virulent S. Typhimurium in pregnant mice. Here we demonstrate that DV-STM-07 vaccine gives protection against Salmonella in pregnant mice and also prevents Salmonella induced abortion. This protection is conferred by directing the immune response towards Th2 activation and Th1 suppression. The low Th1 response prevents abortion. The use of live attenuated vaccine just before pregnancy carries the risk of transmission to the fetus. We have shown that this vaccine is safe as the vaccine strain is quickly eliminated from the mother and is not transmitted to the fetus. This vaccine also confers immunity to the new born mice of vaccinated mothers. Since there is no evidence of the vaccine candidate reaching the new born mice, we hypothesize that it may be due to trans-colostral transfer of protective anti-Salmonella antibodies. These results suggest that our vaccine DV-STM-07 can be very useful in preventing abortion in the pregnant individuals and confer immunity to the new born. Since there are no such vaccine candidates which can be given to the new born and to the pregnant women, this vaccine holds a very bright future to combat Salmonella induced pregnancy loss.
Resumo:
The availability of an electrophoretically homogeneous rabbit penicillin carrier receptor protein (CRP) and rabbit antipenicillin antibody afforded an idealin vitro system to calculate the thermodynamic parameters of the binding of14C benzyl penicillin CRP conjugate (antigen) to the purified rabbit antipenicillin antibody. The thermodynamic parameters of this antigen-antibody reaction has been studied by radio-active assay method by using millipore filter. Equilibrium constant (K) of this reaction has been found to be 2·853×109M−2 and corresponding free energy (ΔG) at 4°C and 37°C has been calculated to be −12·02 and −13·5 kcal/mole, enthalpy (ΔH) and entropy (ΔS) has been found to be 361 kcal/mole and +30 eu/mole respectively. Competitive binding studies of CRP-analogue conjugates with the divalent rabbit antibody has been carried out in the presence of14C-penicilloyl CRP. It was found that 7-deoxy penicillin-CRP complex and 6-amino penicilloyl CRP conjugate binds to the antibody with energies stronger than that with the14C-penicilloyl CRP. All the other analogue conjugates are much weaker in interfering with the binding of the penicilloyl CRP with the antibody. The conjugate of methicillin,o-nitro benzyl penicillin and ticarcillin with CRP do not materially interfere in the process.
Resumo:
Synthetic CpG containing oligodeoxynucleotide Toll like receptor-9 agonist (CpG DNA) activates innate immunity and can stimulate antigen presentation against numerous intracellular pathogens. It was observed that Salmonella Typhimurium growth can be inhibited by the CpG DNA treatment in the murine dendritic cells. This inhibitory effect was mediated by an increased reactive oxygen species production. In addition, it was noted that CpG DNA treatment of dendritic cells during Salmonella infection leads to an increased antigen presentation. Further this increased antigen presentation was dependent on the enhanced reactive oxygen species production elicited by Toll like receptor-9 activation. With the help of an exogenous antigen it was shown that Salmonella antigen could also be cross-presented in a better way by CpG induction. These data collectively indicate that CpG DNA enhance the ability of murine dendritic cells to contain the growth of virulent Salmonella through reactive oxygen species dependent killing.
Resumo:
A biomimetic total synthesis of bioactive tetracyclic natural product allomicrophyllone has been achieved in which a protective Diels-Alder reaction employing a disposable sacrificial 1,3-diene directs the regioselectivity of the subsequent Dials-Alder reaction. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
gamma delta T-cell receptor-bearing T cells (gamma delta T cells) are readily activated by intracellular bacterial pathogens such as Mycobacterium tuberculosis. The bacterial antigens responsible for gamma delta T-cell activation remain poorly characterized. We have found that heat treatment of live M. tuberculosis bacilli released into the supernatant an antigen which stimulated human gamma delta T cells, gamma delta T-cell activation was measured by determining the increase in percentage of gamma delta T cells by flow cytometry in peripheral blood mononuclear cells stimulated with antigen and by proliferation of gamma delta T-cell lines with monocytes as antigen-presenting cells. Supernatant from heat-treated M. tuberculosis was fractionated by fast-performance liquid chromatography (FPLC) on a Superose 12 column. Maximal gamma delta T-cell activation was measured for a fraction of 10 to 14 kDa. Separation of the supernatant by preparative isoelectric focusing demonstrated peak activity at a pi of <4.0. On two-dimensional gel electrophoresis, the 10- to 14-kDa FPLC fraction contained at least seven distinct molecules, of which two had a pi of <4.5. Protease treatment reduced the bioactivity of the 10- to 14-kDa FPLC fraction for both resting and activated gamma delta T cells. Murine antibodies raised to the 10- to 14-kDa fraction reacted by enzyme-linked immunosorbent assay with antigens of 10 to 14 kDa in lysate of M. tuberculosis. In addition, gamma delta T cells proliferated in response to an antigen of 10 to 14 kDa present in M. tuberculosis lysate. gamma delta T-cell-stimulating antigen was not found in culture filtrate of M. tuberculosis but was associated,vith the bacterial pellet and lysate of M. tuberculosis. These results provide a preliminary characterization of a 10- to 14-kDa, cell-associated, heat-stable, low-pI protein antigen of M. tuberculosis which is a major stimulus for human gamma delta T cells.
Resumo:
In the present study, we report for the first time the efficacy of recombinant Bm95 mid gut antigen isolated from an Argentinean strain of Rhipicephalus microplus strain A in controlling the tick infestations in India. The synthetic gene for Bm95 optimized for expression in yeast was obtained and used to generate yeast transformants expressing Bm95 which was purified to apparent homogeneity. Liquid chromatography-mass spectrometry analysis of the purified protein confirmed its identity as Bm95. Vaccine was prepared by blending various concentrations of purified Bm95 with aluminium hydroxide as an adjuvant. lmmunogenicity studies of the vaccine in rabbits and cattle indicated that the vaccine was highly immunogenic. The efficacy studies of the vaccine was done in cattle. Naive Bos indicus cattle were vaccinated with the recombinant vaccine and were challenged with the larval, nymphal and adult forms of Rhiphicephalus haemaphysaloides. The vaccine protected the animals from larval, nymph and adult tick challenges with an efficacy of 98.7%, 84.6% and 78.9% respectively. The results obtained from the above studies clearly demonstrated the advantage and possibilities of the use of Bm95 in controlling R. haemaphysaloides infestations in the field. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A single step solid phase radioimmunoassay (SS-SPRIA) has been developed for human chorionic,gonadotropin (hCG) using monoclonal antibodies (MAb) from culture media adsorbed immunochemically on plastic tubes. The assays have been found to be very simple in terms of operation and do not demand purification of MAbs. Several MAbs which do not show any displacement in liquid phase RIA and ELISA provide a satisfactory SS-SPRIA. Our investigations revealed that the assumption regarding the stability of the primary Mab-Ag complex during incubation and washing steps in ELISAs is not strictly valid for dissociable MAbs. A comparison of different assay systems suggests that the single step SPRIA offers additional advantages over conventionally used multistep ELISA procedures and provides a quantitative probe for the analysis of epitope-paratope interactions.
Resumo:
Kinetic constants of MAb-hCG interactions have been determined using solid phase binding of I-125[hCG] to immobilized MAb. While association has been shown to follow the expected pattern, dissociation consists of at least two reversible steps, one with a rate constant of 0.0025 min(-1), and a second with a rate constant of 0.00023 min(-1). Validity of affinity constant measurements in the light of the complex reaction kinetics is discussed, A comparison between the method of surface plasmon resonance technology (BIAcore) and solid phase binding (SPB) for determination of kinetic parameters shows that SPB provides not only a cost-effective approach for determination of realtime kinetic parameters of macromolecular ligand-ligate interaction but also a method with several advantages over the BIAcore system in investigating the mechanism of antigen-antibody interaction.
Resumo:
For the successful performance of a granular filter medium, existing design guidelines, which are based on the particle size distribution (PSD) characteristics of the base soil and filter medium, require two contradictory conditions to be satisfied, viz., soil retention and permeability. In spite of the wider applicability of these guidelines, it is well recognized that (i) they are applicable to a particular range of soils tested in the laboratory, (ii) the design procedures do not include performance-based selection criteria, and (iii) there are no means to establish the sensitivity of the important variables influencing performance. In the present work, analytical solutions are developed to obtain a factor of safety with respect to soil-retention and permeability criteria for a base soil - filter medium system subjected to a soil boiling condition. The proposed analytical solutions take into consideration relevant geotechnical properties such as void ratio, permeability, dry unit weight, effective friction angle, shape and size of soil particles, seepage discharge, and existing hydraulic gradient. The solution is validated through example applications and experimental results, and it is established that it can be used successfully in the selection as well as design of granular filters and can be applied to all types of base soils.
Resumo:
Background: Lymphatic filariasis is a painful and profoundly disfiguring disease. Infection is usually acquired in childhood but its visible manifestations occur later in life, causing temporary or permanent disability. The importance of developing effective assays to diagnose, monitor and evaluate human lymphatic filariasis has been emphasized by the WHO. Methods: High-affinity monoclonal antibodies (mAbs) specific for recombinant filarial antigen WbSXP-1 were developed. An ELISA based capture assay using monoclonal and polyclonal antibodies for WbSXP-1 was used for detection of circulating filarial antigen. Results: High-affinity monoclonal antibodies (mAbs) were developed that specifically binds both W. bancrofti and B. malayi mf antigens. Two mAbs (1F6H3 and 2E12E3) of subclass IgG2a and IgM showed high affinity, avidity and reactivity to recombinant and mf native antigen. Both the mAbs were used in combination as capture antibodies and polyclonal as detection antibody to develop the assay. The assay showed very high sensitivity towards W. bancrofti mf positive samples compared to endemic normal samples (P<0.0001). Conclusion: A capture assay using high-affinity monoclonal antibodies for WbSXP-1 was developed for the detection of filarial circulating antigen in clinical samples from bancroftian infection. Besides, this would also help in epidemiological studies in endemic areas of filarial infections. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Dendritic cells (DCs) as sentinels of the immune system are important for eliciting both primary and secondary immune responses to a plethora of microbial pathogens. Cooperative stimulation of a complex set of pattern-recognition receptors, including TLR2 and nucleotide-binding oligomerization domain (NOD)-like receptors on DCs, acts as a rate-limiting factor in determining the initiation and mounting of the robust immune response. It underscores the need for ``decoding'' these multiple receptor interactions. In this study, we demonstrate that TLR2 and NOD receptors cooperatively regulate functional maturation of human DCs. Intriguingly, synergistic stimulation of TLR2 and NOD receptors renders enhanced refractoriness to TGF-beta- or CTLA-4-mediated impairment of human DC maturation. Signaling perturbation data suggest that NOTCH1-PI3K signaling dynamics assume critical importance in TLR2- and NOD receptor-mediated surmounting of CTLA-4- and TGF-beta -suppressed maturation of human DCs. Interestingly, the NOTCH1-PI3K signaling axis holds the capacity to regulate DC functions by virtue of PKC delta-MAPK-dependent activation of NF-kappa B. This study provides mechanistic and functional insights into TLR2-and NOD receptor-mediated regulation of DC functions and unravels NOTCH1-PI3K as a signaling cohort for TLR2 and NOD receptors. These findings serve in building a conceptual foundation for the design of improved strategies for adjuvants and immunotherapies against infectious diseases.