65 resultados para Prokaryotic Genomes
Resumo:
New antiretroviral drugs that offer large genetic barriers to resistance, such as the recently approved inhibitors of HIV-1 protease, tipranavir and darunavir, present promising weapons to avert the failure of current therapies for HIV infection. Optimal treatment strategies with the new drugs, however, are yet to be established. A key limitation is the poor understanding of the process by which HIV surmounts large genetic barriers to resistance. Extant models of HIV dynamics are predicated on the predominance of deterministic forces underlying the emergence of resistant genomes. In contrast, stochastic forces may dominate, especially when the genetic barrier is large, and delay the emergence of resistant genomes. We develop a mathematical model of HIV dynamics under the influence of an antiretroviral drug to predict the waiting time for the emergence of genomes that carry the requisite mutations to overcome the genetic barrier of the drug. We apply our model to describe the development of resistance to tipranavir in in vitro serial passage experiments. Model predictions of the times of emergence of different mutant genomes with increasing resistance to tipranavir are in quantitative agreement with experiments, indicating that our model captures the dynamics of the development of resistance to antiretroviral drugs accurately. Further, model predictions provide insights into the influence of underlying evolutionary processes such as recombination on the development of resistance, and suggest guidelines for drug design: drugs that offer large genetic barriers to resistance with resistance sites tightly localized on the viral genome and exhibiting positive epistatic interactions maximally inhibit the emergence of resistant genomes.
Resumo:
Guanylyl cyclases (GCs) are enzymes that generate cyclic GMP and regulate different physiologic and developmental processes in a number of organisms. GCs possess sequence similarity to class III adenylyl cyclases (ACs) and are present as either membrane-bound receptor GCs or cytosolic soluble GCs. We sought to determine the evolution of GCs using a large-scale bioinformatic analysis and found multiple lineage-specific expansions of GC genes in the genomes of many eukaryotes. Moreover, a few GC-like proteins were identified in prokaryotes, which come fused to a number of different domains, suggesting allosteric regulation of nucleotide cyclase activity Eukaryotic receptor GCs are associated with a kinase homology domain (KHD), and phylogenetic analysis of these proteins suggest coevolution of the KHD and the associated cyclase domain as well as a conservation of the sequence and the size of the linker region between the KHD and the associated cyclase domain. Finally, we also report the existence of mimiviral proteins that contain putative active kinase domains associated with a cyclase domain, which could suggest early evolution of the fusion of these two important domains involved in signa transduction.
Resumo:
In Escherichia coli, the canonical intrinsic terminator of transcription includes a palindrome followed by a U-trail on the transcript. The apparent underrepresentation of such terminators in eubacterial genomes led us to develop a rapid and accurate algorithm, GeSTer, to predict putative intrinsic terminators. Now, we have analyzed 378 genome sequences with an improved version of GeSTer. Our results indicate that the canonical E. coli type terminators are not overwhelmingly abundant in eubacteria. The atypical structures, having stem-loop structures but lacking ‘U’ trail, occur downstream of genes in all the analyzed genomes but different phyla show conserved preference for different types of terminators. This propensity correlates with genomic GC content and presence of the factor, Rho. 60–70% of identified terminators in all the genomes show “optimized” stem-length and ΔG. These results provide evidence that eubacteria extensively rely on the mechanism of intrinsic termination, with a considerable divergence in their structure, positioning and prevalence. The software and detailed results for individual genomes are freely available on request
Resumo:
The DNA increment method, designed for measuring the increment in the amount of DNA after inhibition of initiation of fresh rounds of replication initiation was employed to measure the rate of deoxyribonucleic acid (DNA) chain growth in Mycobacterium tuberculosis H37Rv growing in Youman and Karlson's medium at 37°C with a generation time of 24 h and also in relatively fast growing species like Mycobacterium smegmatis and Escherichia coli. From the results obtained, the time required for a DNA replication fork to traverse the chromosome from origin to terminus (C period) was calculated. The chain elongation rates of DNA of the three organisms was determined from the C period and the known genome sizes assuming that all these genomes have a single replication origin and bidirectional replication fork. The rate for M. tuberculosis was 3,200 nucleotides per min about 11 times slower than that of M. smegmatis and about 13–18 times slower than that of E. coli.
Resumo:
The evolutionary function of X chromosome inactivation is thought to be dosage compensation. However, there is, at present, little evidence to suggest that most X chromosome-linked genes require such compensation. Another view--that X chromosome inactivation may be related to sex determination--is examined here. Consider a hypothetical DNA sequence regulating a major structural gene concerned with the determination of maleness. If this regulatory sequence occurs in both X and Y chromosomes and if its copy number in the Y chromosome is significantly greater than in the X chromosome, then the male-determining properties of the Y chromosome could be attributed to this higher copy number. On the other hand, if the Y chromosome has the same copy number of this sequence as the X chromosome, it is difficult to see how determination of two sexes would occur under such circumstances because XX and XY genomes would then be indistinguishable in this regard. Such a situation seems to occur in the human species with respect to the banded krait minor satellite, a repetitious DNA sequence associated with sex determination. This apparent difficulty may be resolved if X chromosome inactivation renders regulatory as well as structural genes nonfunctional and thereby brings about a significant reduction in the effective copy number of X chromosome-linked DNA sequences concerned with sex determination. It is suggested that X chromosome inactivation brings about, in this manner, a critical inequality between XX and XY embryos and that sex determination in humans is a consequence of this inequality. An analogous situation appears to exist in certain insects in which inactivation of a haploid set of chromosomes (and presumably, therefore, a 50% reduction in the effective copy number of most genes) is associated with maleness. If this line of reasoning is correct, it would suggest that sex determination may be the primary function of X chromosome inactivation.
Resumo:
Genome sequence information has generated increasing evidence for the claim that repetitive DNA sequences present within and around genes could play a important role in the regulation of gene expression. Polypurine/polypyrimidine sequences [poly(Pu/Py)] have been observed in the vicinity of promoters and within the transcribed regions of many genes. To understand whether such sequences influence the level of gene expression, we constructed several prokaryotic and eukaryotic expression vectors incorporating poly(Pu/Py) repeats both within and upstream of a reporter gene, lacZ (encoding β-galactosidase), and studied its expression in vivo. We find that, in contrast to the situation in Escherichia coli, the presence of poly(Pu/Py) sequences within the gene does not significantly inhibit gene expression in mammalian cells. On the other hand, the presence of such sequences upstream of lacZ leads to a several-fold reduction of gene expression in mammalian cells. Similar down-regulation was observed when a structural cassette containing poly(Pu/Py) sequences upstream of lacZ was integrated into yeast chromosome V. Sequence analysis of the nine totally sequenced yeast chromosomes shows that a large number of such sequences occur upstream of ORFs. On the basis of our experimental results and DNA sequence analysis, we propose that these sequences can function as cis-acting transcriptional regulators.
A Mycobacterial Cyclic AMP Phosphodiesterase That Moonlights as a Modifier of Cell Wall Permeability
Resumo:
Mycobacterium tuberculosis utilizes many mechanisms to establish itself within the macrophage, and bacterially derived cAMP is important in modulating the host cellular response. Although the genome of M. tuberculosis is endowed with a number of mammalian-like adenylyl cyclases, only a single cAMP phosphodiesterase has been identified that can decrease levels of cAMP produced by the bacterium. We present the crystal structure of the full-length and sole cAMP phosphodiesterase, Rv0805, found in M. tuberculosis, whose orthologs are present only in /the genomes of slow growing and pathogenic mycobacteria. The dimeric core catalytic domain of Rv0805 adopts a metallophosphoesterase fold, and the C-terminal region builds the active site and contributes to multiple substrate utilization.Localization of Rv0805 to the cell wall is dependent on its C terminus, and expression of either wild type or mutationally inactivated Rv0805 in M. smegmatis alters cell permeability to hydrophobic cytotoxic compounds. Rv0805 may therefore play a key role in the pathogenicity of mycobacteria, not only by hydrolyzing bacterial cAMP, but also by moonlighting as a protein that can alter cell wall functioning.
Resumo:
The current explosion of DNA sequence information has generated increasing evidence for the claim that noncoding repetitive DNA sequences present within and around different genes could play an important role in genetic control processes, although the precise role and mechanism by which these sequences function are poorly understood. Several of the simple repetitive sequences which occur in a large number of loci throughout the human and other eukaryotic genomes satisfy the sequence criteria for forming non-B DNA structures in vitro. We have summarized some of the features of three different types of simple repeats that highlight the importance of repetitive DNA in the control of gene expression and chromatin organization. (i) (TG/CA)n repeats are widespread and conserved in many loci. These sequences are associated with nucleosomes of varying linker length and may play a role in chromatin organization. These Z-potential sequences can help absorb superhelical stress during transcription and aid in recombination. (ii) Human telomeric repeat (TTAGGG)n adopts a novel quadruplex structure and exhibits unusual chromatin organization. This unusual structural motif could explain chromosome pairing and stability. (iii) Intragenic amplification of (CTG)n/(CAG)n trinucleotide repeat, which is now known to be associated with several genetic disorders, could down-regulate gene expression in vivo. The overall implications of these findings vis-à-vis repetitive sequences in the genome are summarized.
Resumo:
Mobile genetic elements constitute a remarkably diverse group of nonessential selfish genes that provide no apparent function to the host. These selfish genes have been implicated in host extinction, speciation and architecture of genetic systems. Homing endonucleases, encoded by the open reading frames embedded in introns or inteins of mobile genetic elements, possess double-stranded DNA-specific endonuclease activity. They inflict sequence-specific double-strand breaks at or near the homing site in intron- or intein-less allele. Subsequently, through nonreciprocal exchange the insertion sequence (intron or intein) is transferred from an intein- or intron-containing allele to an intein- or intron-less allele. The components of host double-strand break repair pathway are thought to finish the "homing" process. Several lines of evidence suggest that homing endonucleases are capable of promoting transposition into ectopic sites within or across genomes for their survival as well as dispersal in natural populations. The occurrence of inteins at high frequencies serves as instructive models for understanding the mechanistic aspects of the process of homing and its evolution. This review focuses on genetic, biochemical, structural, and phylogenetic aspects of homing endonucleases, and their comparison with restriction endonucleases.
Resumo:
Mycobacterial genomes are endowed with many eukaryote-like nucleotide cyclase genes encoding proteins that can synthesize 3',5'-cyclic AMP (cAMP). However, the roles of cAMP and the need for such redundancy in terms of adenylyl cyclase genes remain unknown. We measured cAMP levels in Mycobacterium smegmatis during growth and under various stress conditions and report the first biochemical and functional characterization of the MSMEG_3780 adenylyl cyclase, whose orthologs in Mycobacterium tuberculosis (Rv1647) and Mycobacterium leprae (ML1399) have been recently characterized in vitro. MSMEG_3780 was important for producing cAMP levels in the logarithmic phase of growth, since the {Delta}MSMEG_3780 strain showed lower intracellular cAMP levels at this stage of growth. cAMP levels decreased in wild-type M. smegmatis under conditions of acid stress but not in the {Delta}MSMEG_3780 strain. This was correlated with a reduction in MSMEG_3780 promoter activity, indicating that the effect of the reduction in cAMP levels on acid stress was caused by a decrease in the transcription of MSMEG_3780. Complementation of the {Delta}MSMEG_3780 strain with the genomic integration of MSMEG_3780 or the Rv1647 gene could restore cAMP levels during logarithmic growth. The Rv1647 promoter was also acid sensitive, emphasizing the biochemical and functional similarities in these two adenylyl cyclases. This study therefore represents the first detailed biochemical and functional analysis of an adenylyl cyclase that is important for maintaining cAMP levels in mycobacteria and underscores the subtle roles that these genes may play in the physiology of the organism.
Resumo:
Rpb4, the fourth largest subunit of the eukaryotic RNA polymerase II (RNAPII), is required for growth at extreme temperatures and for an appropriate response to nutrient starvation in yeast. Sequence homologs of Rpb4 are found in most sequenced genomes from yeast to humans. To elucidate the role of this subunit in nutrient starvation, we chose Dictyostelium discoideum, a soil amoeba, which responds to nutrient deprivation by undergoing a complex developmental program. Here we report the identification of homolog of Saccharomyces cerevisiae RPB4 in D. discoideum. Localization and complementation studies suggest that Rpb4 is functionally conserved. DdRPB4 transcript and protein levels are developmentally regulated. Although DdRPB4 could not be deleted, overexpression revealed that the Rpb4 protein is essential for cell survival and is regulated stringently at the post-transcriptional level in D. discoideum. Thus maintaining a critical level of Rpb4 is important for this organism.
Resumo:
This article intends to cover two aspects of non-segmented negative sense RNA viruses. In the initial section, the strategy employed by these viruses to replicate their genomes is discussed. This would help in understanding the later section in which the use of these viruses as vaccine vectors has been discussed. For the description of the replication strategy which encompasses virus genome transcription and genome replication carried out by the same RNA dependent RNA polymerase complex, a member of the prototype rhabdovirus family - Chandipura virus has been chosen as an example to illustrate the complex nature of the two processes and their regulation. In the discussion on these viruses serving as vectors for carrying vaccine antigen genes, emphasis has been laid on describing the progress made in using the attenuated viruses as vectors and a description of the systems in which the efficiency of immune responses has been tested.
Resumo:
Rifampicin and its derivatives are at the forefront of the current standard chemotherapeutic regimen for active tuberculosis; they act by inhibiting the transcription activity of prokaryotic RNA polymerase. Rifampicin is believed to interact with the beta subunit of RNA polymerase. However, it has been observed that protein-protein interactions with RNA polymerase core enzyme lead to its reduced susceptibility to rifampicin. This mechanism became more diversified with the discovery of RbpA, a novel RNA polymerase-binding protein, in Streptomyces coelicolor that could mitigate the effect of rifampicin on RNA polymerase activity. MsRbpA is a homologue of RbpA in Mycobacterium smegmatis. On deciphering the role of MsRbpA in M. smegmatis we found that it interacts with RNA polymerase and increases the rifampicin tolerance levels, both in vitro and in vivo. It interacts with the beta subunit of RNA polymerase. However, it was found to be incapable of rescuing rifampicin-resistant RNA polymerases in the presence of rifampicin at the respective IC50.
Resumo:
The incorporation of dUMP during replication or the deamination of cytosine in DNA results in the occurrence of uracils in genomes. To maintain genomic integrity, uracil DNA glycosylases (UDGs) excise uracil from DNA and initiate the base-excision repair pathway. Here, we cloned, purified and biochemically characterized a family 5 UDG, UdgB, from Mycobacterium smegmatis to allow us to use it as a model organism to investigate the physiological significance of the novel enzyme. Studies with knockout strains showed that compared with the wild-type parent, the mutation rate of the udgB(-) strain was approximately twofold higher, whereas the mutation rate of a strain deficient in the family 1 UDG (ung(-)) was found to be similar to 8.4-fold higher. Interestingly, the mutation rate of the double-knockout (ung(-)ludgB(-)) strain was remarkably high, at similar to 19.6-fold. While CG to TA mutations predominated in the ung(-) and ung(-)/udgb(-) strains, AT to GC mutations were enhanced in the udgB(-) strain. The ung(-)/udgB(-) strain was notably more sensitive to acidified nitrite and hydrogen peroxide stresses compared with the single knockouts (ung(-) or udgB(-)). These observations reveal a synergistic effect of UdgB and Ung in DNA repair, and could have implications for the generation of attenuated strains of Mycobacterium tuberculosis.
Resumo:
Coenzyme A is an indispensable cofactor for all organisms and holds a central position in a number of pathways. Prokaryotic enzymes involved in the synthesis of CoA are quite different from their mammalian counterparts; hence, they are good targets for the development of antimicrobials to treat many diseases. There are antimicrobials that act by inhibiting CoA biosynthesis. It has been suggested that pantothenol exhibits antibacterial activity by competitively inhibiting pantothenate kinase, a key regulatory enzyme for CoA synthesis. Contrary to these suggestions, in this paper, we demonstrate that pantothenol acts as a substrate for Mycobacterium tuberculosis and Escherichia coli pantothenate kinases. The product, 4'-phosphopantothenol, thus formed inhibits competitively the utilization of 4'-phosphopantothenate by CoaBC. Thus, it is the failure of CoaBC to utilize 4'-phosphopantothenol as a substrate that accounts for the bactericidal activity of pantothenol. (C) 2007 Elsevier Inc. All rights reserved.