22 resultados para Probit estimations
Resumo:
Using a Girsanov change of measures, we propose novel variations within a particle-filtering algorithm, as applied to the inverse problem of state and parameter estimations of nonlinear dynamical systems of engineering interest, toward weakly correcting for the linearization or integration errors that almost invariably occur whilst numerically propagating the process dynamics, typically governed by nonlinear stochastic differential equations (SDEs). Specifically, the correction for linearization, provided by the likelihood or the Radon-Nikodym derivative, is incorporated within the evolving flow in two steps. Once the likelihood, an exponential martingale, is split into a product of two factors, correction owing to the first factor is implemented via rejection sampling in the first step. The second factor, which is directly computable, is accounted for via two different schemes, one employing resampling and the other using a gain-weighted innovation term added to the drift field of the process dynamics thereby overcoming the problem of sample dispersion posed by resampling. The proposed strategies, employed as add-ons to existing particle filters, the bootstrap and auxiliary SIR filters in this work, are found to non-trivially improve the convergence and accuracy of the estimates and also yield reduced mean square errors of such estimates vis-a-vis those obtained through the parent-filtering schemes.
Resumo:
Wind stress is the most important ocean forcing for driving tropical surface currents. Stress can be estimated from scatterometer-reported wind measurements at 10 m that have been extrapolated to the surface, assuming a neutrally stable atmosphere and no surface current. Scatterometer calibration is designed to account for the assumption of neutral stability; however, the assumption of a particular sea state and negligible current often introduces an error in wind stress estimations. Since the fundamental scatterometer measurement is of the surface radar backscatter (sigma-0) which is related to surface roughness and, thus, stress, we develop a method to estimate wind stress directly from the scatterometer measurements of sigma-0 and their associated azimuth angle and incidence angle using a neural network approach. We compare the results with in situ estimations and observe that the wind stress estimations from this approach are more accurate compared with those obtained from the conventional estimations using 10-m-height wind measurements.
Resumo:
We report detailed evidence for a new paleo-suture zone (the Kumta suture) on the western margin of southern India. The c. 15-km-wide, westward dipping suture zone contains garnet-biotite, fuchsite-haematite, chlorite-quartz, quartz-phengite schists, biotite augen gneiss, marble and amphibolite. The isochemical phase diagram estimations and the high-Si phengite composition of quartz-phengite schist suggest a near-peak condition of c. 18 kbar at c. 550 degrees C, followed by near-isothermal decompression. The detrital SHRIMP U-Pb zircon ages from quartz-phengite schist give four age populations ranging from 3280 to 2993 Ma. Phengite from quartz-phengite schist and biotite from garnet-biotite schist have K-Ar metamorphic ages of ca. 1326 and ca. 1385 Ma respectively. Electron microprobe-CHIME ages of in situ zircons in quartz-phengite schist (ca. 3750 Ma and ca. 1697 Ma) are consistent with the above results. The Bondla ultramafic-gabbro complex in the west of the Kumta suture compositionally represents an arc with K-Ar biotite ages from gabbro in the range 1644-1536 Ma. On the eastern side of the suture are weakly deformed and unmetamorphosed shallow westward-dipping sedimentary rocks of the Sirsi shelf, which has the following upward stratigraphy: pebbly quartzite/sandstone, turbidite, magnetite iron formation, and limestone; farther east the lower lying quartzite has an unconformable contact with ca. 2571 Ma quartzo-feldspathic gneisses of the Dharwar block with a ca. 1733 Ma biotite cooling age. To the west of the suture is a c. 60-km-wide Karwar block mainly consisting of tonalite-trondhjemite-granodiorite (TTG) and amphibolite. The TTGs have U-Pb zircon magmatic ages of ca. 3200 Ma with a rare inherited core age of ca. 3601 Ma. The K-Ar biotite cooling age from the TTGs (1746 Ma and 1796 Ma) and amphibolite (ca. 1697 Ma) represents late-stage uplift. Integration of geological, structural and geochronological data from western India and eastern Madagascar suggest diachronous ocean closure during the amalgamation of Rodinia; in the north at around ca. 1380 Ma, and a progression toward the south until ca. 750 Ma. Satellite imagery based regional structural lineaments suggests that the Betsimisaraka suture continues into western India as the Kumta suture and possibly farther south toward a suture in the Coorg area, representing in total a c. 1000 km long Rodinian suture. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Ice volume estimates are crucial for assessing water reserves stored in glaciers. Due to its large glacier coverage, such estimates are of particular interest for the Himalayan-Karakoram (HK) region. In this study, different existing methodologies are used to estimate the ice reserves: three area-volume relations, one slope-dependent volume estimation method, and two ice-thickness distribution models are applied to a recent, detailed, and complete glacier inventory of the HK region, spanning over the period 2000-2010 and revealing an ice coverage of 40 775 km(2). An uncertainty and sensitivity assessment is performed to investigate the influence of the observed glacier area and important model parameters on the resulting total ice volume. Results of the two ice-thickness distribution models are validated with local ice-thickness measurements at six glaciers. The resulting ice volumes for the entire HK region range from 2955 to 4737 km(3), depending on the approach. This range is lower than most previous estimates. Results from the ice thickness distribution models and the slope-dependent thickness estimations agree well with measured local ice thicknesses. However, total volume estimates from area-related relations are larger than those from other approaches. The study provides evidence on the significant effect of the selected method on results and underlines the importance of a careful and critical evaluation.
Resumo:
In many applications, the training data, from which one needs to learn a classifier, is corrupted with label noise. Many standard algorithms such as SVM perform poorly in the presence of label noise. In this paper we investigate the robustness of risk minimization to label noise. We prove a sufficient condition on a loss function for the risk minimization under that loss to be tolerant to uniform label noise. We show that the 0-1 loss, sigmoid loss, ramp loss and probit loss satisfy this condition though none of the standard convex loss functions satisfy it. We also prove that, by choosing a sufficiently large value of a parameter in the loss function, the sigmoid loss, ramp loss and probit loss can be made tolerant to nonuniform label noise also if we can assume the classes to be separable under noise-free data distribution. Through extensive empirical studies, we show that risk minimization under the 0-1 loss, the sigmoid loss and the ramp loss has much better robustness to label noise when compared to the SVM algorithm. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We present a localization system that targets rapid deployment of stationary wireless sensor networks (WSN). The system uses a particle filter to fuse measurements from multiple localization modalities, such as RF ranging, neighbor information or maps, to obtain position estimations with higher accuracy than that of the individual modalities. The system isolates different modalities into separate components which can be included or excluded independently to tailor the system to a specific scenario. We show that position estimations can be improved with our system by combining multiple modalities. We evaluate the performance of the system in both an indoor and outdoor environment using combinations of five different modalities. Using two anchor nodes as reference points and combining all five modalities, we obtain RMS (Root Mean Square) estimation errors of approximately 2.5m in both cases, while using the components individually results in errors within the range of 3.5 and 9 m.
Resumo:
Aerosol loading over the South Asian region has the potential to affect the monsoon rainfall, Himalayan glaciers and regional air-quality, with implications for the billions in this region. While field campaigns and network observations provide primary data, they tend to be location/season specific. Numerical models are useful to regionalize such location-specific data. Studies have shown that numerical models underestimate the aerosol scenario over the Indian region, mainly due to shortcomings related to meteorology and the emission inventories used. In this context, we have evaluated the performance of two such chemistry-transport models: WRF-Chem and SPRINTARS over an India-centric domain. The models differ in many aspects including physical domain, horizontal resolution, meteorological forcing and so on etc. Despite these differences, both the models simulated similar spatial patterns of Black Carbon (BC) mass concentration, (with a spatial correlation of 0.9 with each other), and a reasonable estimates of its concentration, though both of them under-estimated vis-a-vis the observations. While the emissions are lower (higher) in SPRINTARS (WRF-Chem), overestimation of wind parameters in WRF-Chem caused the concentration to be similar in both models. Additionally, we quantified the under-estimations of anthropogenic BC emissions in the inventories used these two models and three other widely used emission inventories. Our analysis indicates that all these emission inventories underestimate the emissions of BC over India by a factor that ranges from 1.5 to 2.9. We have also studied the model simulations of aerosol optical depth over the Indian region. The models differ significantly in simulations of AOD, with WRF-Chem having a better agreement with satellite observations of AOD as far as the spatial pattern is concerned. It is important to note that in addition to BC, dust can also contribute significantly to AOD. The models differ in simulations of the spatial pattern of mineral dust over the Indian region. We find that both meteorological forcing and emission formulation contribute to these differences. Since AOD is column integrated parameter, description of vertical profiles in both models, especially since elevated aerosol layers are often observed over Indian region, could be also a contributing factor. Additionally, differences in the prescription of the optical properties of BC between the models appear to affect the AOD simulations. We also compared simulation of sea-salt concentration in the two models and found that WRF-Chem underestimated its concentration vis-a-vis SPRINTARS. The differences in near-surface oceanic wind speeds appear to be the main source of this difference. In-spite of these differences, we note that there are similarities in their simulation of spatial patterns of various aerosol species (with each other and with observations) and hence models could be valuable tools for aerosol-related studies over the Indian region. Better estimation of emission inventories could improve aerosol-related simulations. (C) 2015 Elsevier Ltd. All rights reserved.