35 resultados para Polyester urethane


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moisture absorption characteristics and its effects on the mechanical properties and failure process of polymers (neat epoxy and polyester resins) and composites with simple (glass, carbon and kevlar) and hybrid (glass-carbon, carbon-kevlar and kevlar-glass) fibres were experimentally determined before and after immersion in water at 343 K for 20 days. The maximum moisture content (Mm) and diffusion coefficient (Dx) of these composites were determined. The degradation in ultimate tensile strength and Young's modulus due to the moisture content were experimentally determined and found to be quite significant. Acoustic emissions, from specimens before and after exposure, were monitored during the load cycle, and revealed a significant change in the failure process of these composites. Scanning Electron Microscope (SEM) studies on failed exposed and unexposed specimens revealed resin leach out and fibre prominence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyphosphate esters containing ferrocene structures were synthesized from 1,1′-bis (p-hydroxyphenylamido) ferrocene and 1,1′-bis (p-hydroxyphenoxycarbonyl) ferrocene with aryl phosphorodichloridates by interfacial polycondensation using a phase transfer catalyst. The polymers were characterized by infrared, 1H-, 13C-, and 31-NMR spectroscopy. The molecular weights were determined by end group analysis using 31P-NMR spectral data. The thermal stability and fire retardancy were respectively determined by thermogravimetry and limiting oxygen index (LOI) measurements. The polyamide-phosphate esters showed better thermal stability and higher LOI values than the polyester-phosphate esters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an attempt to toughen the epoxy resin matrix for fiber-reinforced composite applications, a chemical modification procedure of a commercially available bisphenol-A-based epoxy resin using reactive liquid rubber HTBN [hydroxy-terminated poly(butadiene-co-acrylonitrile)] and TDI (tolylene diisocyanate) is described. The progress of the reaction and the structural changes during modification process are studied using IR spectroscopy, viscosity data, and chemical analysis (epoxy value determination). The studies support the proposition that TDI acts as a coupling agent between the epoxy and HTBN, forming a urethane linkage with the former and an oxazolidone ring with the latter. The chemical reactions that possibly take place during the modification are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an attempt to toughen the epoxy resin matrix for fiber-reinforced composite applications, a chemical modification procedure of a commercially available bisphenol-A-based epoxy resin using reactive liquid rubber HTBN [hydroxy-terminated poly(butadiene-co-acrylonitrile)] and TDI (tolylene diisocyanate) is described. The progress of the reaction and the structural changes during modification process are studied using IR spectroscopy, viscosity data, and chemical analysis (epoxy value determination). The studies support the proposition that TDI acts as a coupling agent between the epoxy and HTBN, forming a urethane linkage with the former and an oxazolidone ring with the latter. The chemical reactions that possibly take place during the modification are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper is based on a study to develop carbon-glass epoxy hybrid composites with desirable thermal properties for applications at cryogenic temperatures. It analyzes the coefficient of thermal expansion of carbon-epoxy and glass-epoxy composite materials and compares it with the properties of carbon-glass epoxy hybrid composites in the temperature range 300 K to 125K. Urethane modified epoxy matrix system is used to make the composite specimens suitable for use even for temperatures as low as 20K. It is noted that the lay-up with 80% of carbon fibers in the total volume fraction of fibers oriented at 30 degrees and 20% of glass fibers oriented at 0 degrees yields near to zero coefficient of thermal expansion as the temperature is lowered from ambient to 125 K. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C20H35N3O6 (Boc-Aib-DL-Pip-Aib-OMe, Boc = tert-butyloxycarbonyl, Aib = alpha-aminoisobutyric acid, Pip = pipecolic acid, OMe = methoxy), M(r) = 413.5, monoclinic, P2(1)/c, a = 18.055 (3), b = 15.048 (3), c = 17.173 (3) angstrom, beta = 91.7 (1)-degrees, V = 4663.8 (9) angstrom3, Z = 8, D(m) = 1.16, D(x) = 1.178 Mg m-3, lambda(Mo Kalpha) = 0.71069 angstrom, mu = 0.081 mm-1, F(000) = 1792, T = 297 K. The final R value for 4925 [I greater-than-or-equal-to 3sigma(I)] reflections is 0.065 (wR = 0.067). The peptide backbone of the two independent molecules in the asymmetric unit is folded at the -Aib-Pip- sequence to form a type-I (I') beta-bend stabilized by a 1 <-- 4 intramolecular N-H...O=C hydrogen bond between the Aib(3) peptide N-H and Boc urethane C=O groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a novel class of periodically grafted amphiphilic copolymers (PGACs) that could serve as nonionic functional mimics of ionenes, the primary difference being that the periodically occurring charged units along the backbone of ionenes are replaced by hydrophilic oligoethylene glycol segments. The synthesis and properties of this new class of segmented polymers that carry a hydrophobic alkylene polyester backone with periodically placed hydrophilic oligo(oxyethylene) pendant units are presented. When the length of the intervening alkylene segment is adequately long, 22-carbons in this case, and the pendant unit is a hexaethylene glycol monomethyl ether (HEG) segment, the polymer chain appears to adopt a folded zigzag conformation, reminiscent of the accordion-type structure formed by cationic ionenes. This transformation is driven by the intrinsic immiscibility of the alkylene and HEG segments and is reinforced by the strong tendency for long chain alkylene segments to crystallize in a paraffinic lattice. Evidence of the formation of such structures comes from the AFM images, which reveal the formation of remarkably flat pancake-like aggregates that are formed by the lateral aggregation of individually collapsed polymer chains; importantly, the heights of these structures match well with the lamellar layer-spacing obtained from SAXS studies of bulk samples. DSC studies further confirm the crystallization of the intervening alkylene segments, especially when they are long (C22), suggesting the formation of the folded zigzag structures. In a suitably designed PGAC that carries diacetylene units symmetrically placed within the alkylene segment, attempts were made to cross-polymerize the diacetylene units and generate PEGylated nanoparticles. However, these attempts were unsuccessful demonstrating the very stringent geometric requirements for the topotactic polymerization of diacetylenes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A methodology using sensitivity analysis is proposed to measure the effective permeability which includes the interaction of the resin and the reinforcement. Initially, mold-filling experiments were performed at isothermal conditions on the test specimen and the positions of the flow front were tracked with time using a flow visualization method. Following this, mold-filling experiments were simulated using a commercial software to obtain the positions of the flow front with time at the process conditions used for experiments. Several iterations were performed using different trial values of the permeability until the experimentally tracked and simulated positions of the flow front with time were matched. Finally, the value of the permeability thus obtained was validated by comparing the positions obtained by performing the experiments at different process conditions with the positions obtained by simulating the experiments. In this study, woven roving and chopped strand mats of E-class glass fiber and unsaturated polyester resin were used for the experiments. From the results, it was found that the measured permeabilities were consistent with varying process conditions. POLYM. COMPOS., 2012. (c) 2012 Society of Plastics Engineers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article deals with the durability of 2D woven mat carbon/polyester, glass/isopolyester, and gel-coated glass/isopolyester reinforced composites under hygrothermic conditions with regard to marine applications. The test coupons were exposed to 60 degrees C and 70 degrees C at 95% RH for a maximum duration of 100 h. The samples were periodically withdrawn and weighed for moisture absorption and tested for the degradation in the mechanical properties such as ultimate tensile strength, flexural strength, interlaminar shear strength, and Young's modulus and flexural modulus. Carbon/isopolyester-based specimens showed greater stability with respect to degradation in the mechanical properties than the glass/isopolyester/gel coat- and glass/isopolyester-based specimens. Glass/isopolyester exhibited the maximum moisture absorption, whereas the minimum moisture absorption was found in glass/isopolyester/gel coat. Diffusion coefficient (D) was found to be the highest for glass/isopolyester and the lowest for glass/isopolyester/gel coat, based on the Fick's law of diffusion. Diffusion coefficient increases with the increase in temperature for all the specimens. Microstructure study of fractured specimens was carried out using scanning electron microscope to compare matrix/fiber debonding and matrix-degradation of fiber-reinforced polymer composites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A peripherally clickable hyperbranched polyester carrying numerous propargyl terminal groups was prepared by a simple melt transesterification polycondensation of a suitably designed AB(2) monomer; this clickable hyperscaffold was then transformed into a variety of different derivatives by using the Cu-catalyzed azide-yne click reaction. Functionalization of the periphery with equimolar quantities of mutually immiscible segments, such as hydrocarbon, fluorocarbon, and PEG, yielded frustrated molecular systems that readapt and form structures wherein the immiscible segments appear to self-segregate to generate either Janus structures (when two immiscible segments are present) or tripodal structures (when three immiscible segments are present). Evidence for such self-segregation was obtained from a variety of studies, such as differential scanning calorimetry, Langmuir isotherms, AFM imaging, and small-angle X-ray scattering measurements. Crystallization of one or more of the peripheral segments reinforced this self-segregation; the weight-fraction-normalized enthalpies of melting associated with the different domains revealed a competition between the segments to optimize their crystalline organization. When one or more of the segments are amorphous, the remaining segments crystallize more effectively and consequently exhibit a higher melting enthalpy. AFM images of monolayers, transferred from the Langmuir trough, revealed that the thickness matches the expected values; furthermore, contact angle measurements clearly demonstrated that the monolayer films are fairly hydrophobic, and in the case of the tripodal hybramers, the presence of domains of hydrocarbon and fluorocarbon appears to impart nanoscale chemical heterogeneity that is reflected in the strong hysteresis in the advancing and receding contact angles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycidyl azide polymer (GAP) was cured through click chemistry by reaction of the azide group with bispropargyl succinate (BPS) through a 1,3-dipolar cycloaddition reaction to form 1,2,3-triazole network. The properties of GAP-based triazole networks are compared with the urethane cured GAP-systems. The glass transition temperature (T-g), tensile strength, and modulus of the system increased with crosslink density, controlled by the azide to propargyl ratio. The triazole incorporation has a higher T-g in comparison to the GAP-urethane system (T-g-20 degrees C) and the networks exhibit biphasic transitions at 61 and 88 degrees C. The triazole curing was studied using Differential Scanning Calorimetry (DSC) and the related kinetic parameters were helpful for predicting the cure profile at a given temperature. Density functional theory (DFT)-based theoretical calculations implied marginal preference for 1,5-addition over 1,4-addition for the cycloaddition between azide and propargyl group. Thermogravimetic analysis (TG) showed better thermal stability for the GAP-triazole and the mechanism of decomposition was elucidated using pyrolysis GC-MS studies. The higher heat of exothermic decomposition of triazole adduct (418kJmol(-1)) against that of azide (317kJmol(-1)) and better mechanical properties of the GAP-triazole renders it a better propellant binder than the GAP-urethane system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to suppress chronic inflammation while supporting cell proliferation, there has been a continuous surge toward development of polymers with the intention of delivering anti-inflammatory molecules in a sustained manner. In the above backdrop, we report the synthesis of a novel, stable, cross-linked polyester with salicylic acid (SA) incorporated in the polymeric backbone and propose a simple synthesis route by melt condensation. The as-synthesized polymer was hydrophobic with a glass transition temperature of 1 degrees C, which increases to 17 degrees C upon curing. The combination of NMR and FT-IR spectral techniques established the ester linkages in the as-synthesized SA-based polyester. The pH-dependent degradation rate and the rate of release of salicylic acid from the as-synthesized SA-based polymer were studied at physiological conditions in vitro. The polyester underwent surface erosion and exhibited linear degradation kinetics in which a change in degradation rate is observed after 4-10 days and 24% mass loss was recorded after 4 months at 37 degrees C and pH 7.4. The delivery of salicylic acid also showed a similar change in slopes, with a sustained release rate of 3.5% in 4 months. The cytocompatibility studies of these polyesters were carried out with C2C12 murine myoblast cells using techniques like MTT assay and flow cytometry. Our results strongly suggest that SA-based polyester supports cell proliferation for 3 days in culture and do not cause cell death (<7%), as quantified by propidium iodide (PI) stained cells. Hence, these polyesters can be used as implant materials for localized, sustained delivery of salicylic acid and have applications in adjuvant cancer therapy, chronic wound healing, and as an alternative to commercially available polymers like poly(lactic acid) and poly(glycolic acid) or their copolymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone) (PCL) is an aliphatic polyester widely used for biomedical applications but lacks the mechanical properties desired for many load-bearing orthopedic applications. The objective of this study was to prepare and characterize PCL composites incorporating multiwall carbon nanotubes (MWNTs) with different surface functional groups. PCL composites were prepared by melt-mixing with three different types of MWNTs: pristine (pMWNT), amine functionalized (aMWNT), and carboxyl functionalized (cMWNT). Melt rheology and scanning electron microscopy indicated good dispersion of the nanotubes in the matrix. Tensile strength and elastic modulus of the polymer was significantly increased by the incorporation of MWNTs and further enhanced by favorable interactions between PCL and aMWNTs. Thermal analysis revealed that MWNTs act as heterogeneous nucleation sites for crystallization of PCL and increase polymer crystallinity. Incorporation of functionalized MWNTs increased the surface water wettability of PCL. Osteoblast proliferation and differentiation was significantly enhanced on functionalized composites. aMWNT composites also exhibited the best bactericidal response. This study demonstrates that surface functionalization of MWNTs profoundly influences the properties of PCL and amine-functionalization offers the optimal combination of mechanical properties, osteogenesis and antimicrobial response. These results have important implications for designing nanocomposites for use in orthopedics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the systematic comparative study of highly c-axis oriented and crystalline piezoelectric ZnO thin films deposited on four different flexible substrates for vibration sensing application. The flexible substrates employed for present experimental study were namely a metal alloy (Phynox), metal (aluminum), polyimide (Kapton), and polyester (Mylar). ZnO thin films were deposited by an RF reactive magnetron sputtering technique. ZnO thin films of similar thicknesses of 700 +/- 30 nm were deposited on four different flexible substrates to have proper comparative studies. The crystallinity, surface morphology, chemical composition, and roughness of ZnO thin films were evaluated by respective material characterization techniques. The transverse piezoelectric coefficient (d(31)) value for assessing the piezoelectric property of ZnO thin films on different flexible substrates was measured by a four-point bending method. ZnO thin films deposited on Phynox alloy substrate showed relatively better material characterization results and a higher piezoelectric d(31) coefficient value as compared to ZnO films on metal and polymer substrates. In order to experimentally verify the above observations, vibration sensing studies were performed. As expected, the ZnO thin film deposited on Phynox alloy substrate showed better vibration sensing performance. It has generated the highest peak to peak output voltage amplitude of 256 mV as compared to that of aluminum (224 mV), Kapton (144 mV), and Mylar (46 mV). Therefore, metal alloy flexible substrate proves to be a more suitable, advantageous, and versatile choice for integrating ZnO thin films as compared to metal and polymer flexible substrates for vibration sensing applications. The present experimental study is extremely important and helpful for the selection of a suitable flexible substrate for various applications in the field of sensor and actuator technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In composite solid propellants, the fuel and oxidizer are held together by a polymer binder. Among the different types of polymeric binders used in solid propellants, hydroxyl terminated polybutadiene (HTPB) is considered as the most versatile. HTPB is conventionally cured using isocyanates to form polyurethanes. However, the incompatibility of isocyanates with energetic oxidizers such as ammonium dinitramide and hydrazinium nitroformate, the short pot life of the propellant slurry, and undesirable side reactions with moisture are limiting factors which adversely affect the mechanical properties of HTPB based propellant. With an aim of resolving these problems, HTPB was chemically transformed to azidoethoxy carbonyl amine terminated polybutadiene and propargyloxy carbonyl amine terminated polybutadiene by adopting appropriate synthesis strategies and characterizing them by spectroscopic and chromatographic techniques. This is the first report on 1,3-dipolar addition reaction involving azide and alkyne end groups for cross-linking HTPB. The blend of these two polymers underwent curing under mild temperature (60 degrees C) conditions through 1,3-dipolar cycloaddition reaction resulting in triazoletriazoline networks. The curing parameters were studied using differential scanning calorimetry. The kinetic parameter, viz., activation energy, was computed to be 107.6 kJ/mol, the preexponential factor was 2.79 x 10(12) s-(1), and the rate constant at 60 degrees C was computed to be 3.64 x 10-(5) s-(1). The cure profile at a given temperature was predicted using the kinetic parameters. Rheological studies revealed that the gel time for curing through the 1,3-dipolar addition is 280 min compared to 120 min for curing through the urethane route. The mechanical properties of the resultant cured polybutadiene network were superior to those of polyurethanes. The cured triazolinetriazole polymer network exhibited biphasic morphology with two glass transitions (T-g) at -56 and 42 degrees C in contrast to the polyurethane which exhibited a single transition at -60 degrees C. This was corroborated by associated morphological changes observed by scanning probe microscopy. The propellant processed using this binder has the advantages of improved pot life as indicated by the end of the mix viscosity which is 165 Pas as compared with 352 Pas for the polyurethane system along with a slow build- up rate. The mechanical properties of the propellant are superior to polyurethane with an improvement of 14% in tensile strength, 22% enhancement in elongation at break, and 12% in modulus.