65 resultados para Plants-maturation
Resumo:
Mycobacterium tuberculosis, the causative agent of pulmonary tuberculosis, infects one-third of the world's population. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). DCs are sentinels of the immune system and are important for eliciting both primary and secondary immune responses to pathogens. In this context, to understand the molecular pathogenesis of tuberculosismand host response to mycobacteria and to conceive prospective vaccine candidates, it is important to understand how cell wall Ags of M. tuberculosis and, in particular, the proline-glutamic acid-polymorphic guanine-cytosine-rich sequence (PE_PGRS) family of proteins modulate DC maturation and function. In this study, we demonstrate that two cell wall-associated/secretory PE_PGRS proteins, PE_PGRS 17 (Rv0978c) and PE_PGRS 11 (Rv0754), recognize TLR2, induce maturation and activation of human DCs, and enhance the ability of DCs to stimulate CD4(+) T cells. We further found that PE_PGRS protein-mediated activation of DCs involves participation of ERK1/2, p38 MAPK, and NF-kappa B signaling pathways. Priming of human DCs with IFN-gamma further augmented PE_PGRS 17 or PE_PGRS 11 Ag-induced DC maturation and secretion of key proinflammatory cytokines. Our results suggest that by activating DCs, PE_PGRS proteins, important mycobacterial cell wall Ags, could potentially contribute in the initiation of innate immune responses during tuberculosis infection and hence regulate the clinical course of tuberculosis. The Journal of Immunology, 2010, 184: 3495-3504.
Carbohydrate binding specificity of the B-cell maturation mitogen from Artocarpus integrifolia seeds
Resumo:
Artocarpin, a mannose-specific lectin, is a homotetrameric protein (M(r) 65,000) devoid of covalently attached carbohydrates and consists of four isolectins with pI in the range 5-6.5. Investigations of its carbohydrate binding specificity reveal that among monosaccharides, mannose is preferred over glucose. Among mannooligosaccharides, mannotriose (Man alpha 1-3[Man alpha 1-6]Man) and mannopentaose are the strongest ligands followed by Man alpha 1-3Man. Extension of these ligands by GlcNAc at the reducing ends of mannooligosaccharides tested remarkably improves their inhibitory potencies, while substitution of both the alpha 1-3 and alpha 1-6 mannosyl residues of mannotriose and the core pentasaccharide of N-linked glycans (Man alpha 1-3[Man alpha 1-6]Man beta 1-4GlcNAc beta 1-4GlcNAc) by GlcNAc or N-acetyllactosamine in beta 1-2 linkage diminishes their inhibitory potencies. Sialylated oligosaccharides are non-inhibitory. Moreover, the substitution of either alpha 1-3 or alpha 1-6 linked mannosyl residues of M5Gn or both by mannose in alpha 1-2 linkage leads to a considerable reduction of their inhibitory power. Addition of a xylose residue in beta 1-2 linkage to the core pentasaccharide improves the inhibitory activity. Considering the fact that artocarpin has the strongest affinity for the xylose containing hepasaccharide from horseradish peroxidase, which differs significantly from all the mannose/glucose-specific lectins, it should prove a useful tool for the isolation and characterization of glycoproteins displaying such structure.
Resumo:
The highly purified enzyme from mung bean seedlings hydrolyzing FAD at pH 9.4 and temperature 49 °, functioned with an initial fast rate followed by a second slower rate. The activity was linear with enzyme concentration over a small range of concentration and was dependent on the time of incubation. Inhibition of enzyme activity with increasing concentrations of AMP was sigmoid;concentrations less than 1 × 10−6 M were without effect, concentrations between 1 × 10−6 and 8 × 10−5 M inhibited by 20% and concentrations beyond 8 × 10−5 Image caused progressive inhibition. Concentrations beyond 1 × 10−3 Image inhibited the activity completely. Preincubation of the enzyme with PCMB or NEM, or aging, or reversible denaturation with urea abolished the inhibitory effect of AMP at concentrations lower than 8 × 10−6 Image . The aged enzyme could be reactivated by ADP.
Resumo:
The occurrence of an enzyme hydrolyzing flavine adenine dinucleotide (FAD) was demonstrated in a number of seed extracts. The enzyme from Phaseolus radiatus was purified 104-fold by fractionation with ammonium sulfate and ethanol and by negative adsorption on alumina Cγ gel. The enzyme cleaves the POP bond of FAD to yield flavine mononucleotide and adenosine monophosphate. When reduced glutathione is added to the enzyme, it cleaves FAD at the COP bond to yield riboflavine, adenosine, and pyrophosphate, Both the activities are optimal at a pH of 7.2 and at a temperature of 37 . The Km for both the activities is 1.65 × 10−5 M. The stoichiometry and the identity of the products of both the treated and untreated enzyme were established. The untreated enzyme was not inhibited by pCMB or arsenite, but the treated enzyme was sensitive to both these inhibitors. The inhibition by pCMB could be reversed by monothiols and the inhibition by arsenite by dithiols.
Resumo:
1. 1. An enzyme catalysing the conversion of α,β-dihydroxyisovalerate and α,β-dihydroxy-β-methylvalerate to α-ketoisovalerate and α-keto-β-methylvalerate has been partially purified from green gram (Phaseolus radiatus), and its characteristics studied. 2. 2. A natural inhibitor, heat stable and inorganic in nature, was observed in the crude extracts. 3. 3. The observed Km values for α-β-dihydroxyisovalerate and α,β-dihydroxy-β-methylvalerate were 2.4 · 10-3 M and 9 · 10-4 M, respectively. 4. 4. The enzyme required the presence of a divalent metal ion (Mg2+, Mn2+ or Fe2+) for maximal activity. Heavy metals like Ag+ and Hg2+ were inhibitory. 5. 5. The optimal activity was around pH 8.0 and the optimum temperature at 52°. The activation energy is found to be 12 600 cal/mole. 6. 6. The enzyme was inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide and sulphydryl compounds like cysteine, glutathione, 2-mercaptoethanol and 2,3-dimercaptopropanol. The inhibition by p-hydroxymercuribenzoate could not be reversed by any of the sulfhydryl compounds tested.
Resumo:
The enzymic hydrolysis of riboflavin to lumichrome and ribitol by extracts of Crinum longifolium bulbs has been demonstrated. The enzyme was purified 48-fold by ZnSO4 treatment and ethanol fractionation, and concentrated by using Sephadex G-25. After establishing the stoichiometry of the reaction, the general properties of the purified enzyme were studied. The enzyme showed maximal activity at pH 7·5, and it had a requirement for reduced glutathione which could be replaced by cysteine or ascorbic acid. Mg2+ and Li+ activated the enzyme. The reaction was highly specific to riboflavin and was competitively inhibited by riboflavin 5′-phosphate.
Biosynthesis of valine and isoleucine in plants I. Formation of α-acetolactate in Phaseolus radiatus
Resumo:
1. 1. The presence of an enzyme system in plants catalyzing the formation of α-acetolactate from pyruvate has been demonstrated; the system in green gram (Phaseolus radiatus) has been partially purified and its characteristics have been studied.2. Free acetaldehyde is formed as a product of the reaction and so the reaction is mainly diverted towards the formation of acetoin. 3. The system requires thiamine pyrophosphate and a divalent metal ion (Mn2+ or Mg2+) for maximum activity. The optimum pH is around 6.0 and the optimum temperature is 60°. 4. The system is very labile in absence of pyruvate, Mn2+ and DPT. 5. The Km values for pyruvate, Mn2+, Mg2+ and DPT are 3·10−2 M. 5·10−5 M, 2·10−5 M, and e·10−6 M respectively. The activation energy is 3540 cal/mole. 6. The enzyme is strongly inhibited by p-chloromercuribenzoate and the inhibition can be reversed partially by 2-mercaptoethanol, BAL or cysteine. Heavy metals, such as Hg2+ and Ag+, are inhibitory but l-valine does not inhibit the reaction.
Resumo:
The partial purification of the enzyme hydrolysing FMN from extracts of greengram seeds (Phaseolus radiatus) is described. The procedures, which entailed precipitation of inert material by manganous sulfate and protamine sulfate treatment, fractional precipitation with alcohol and chromatography on CM-cellulose, afforded preparations whose specific activity was 200 times that of the initial crude extract. The preparation was comparatively specific for FMN. It also hydrolysed, to a much smaller extent, β-glycerophosphate, p-nitrophenyl phosphate and 5′-nucleotides. The differential effects of ions on the FMN and β-glycerophosphate hydrolysing activities are discussed.
Resumo:
The partial purification of the enzyme hydrolysing FMN from extracts of greengram seeds (Phaseolus radiatus) is described. The procedures, which entailed precipitation of inert material by manganous sulfate and protamine sulfate treatment, fractional precipitation with alcohol and chromatography on CM-cellulose, afforded preparations whose specific activity was 200 times that of the initial crude extract. The preparation was comparatively specific for FMN. It also hydrolysed, to a much smaller extent, β-glycerophosphate, p-nitrophenyl phosphate and 5′-nucleotides. The differential effects of ions on the FMN and β-glycerophosphate hydrolysing activities are discussed.
Resumo:
The preparation of the enzyme hydrolysing FMN whose partial purification from green-gram extracts is described in the preceding paper, has been shown to possess phosphotransferase activity. The enzyme could transfer the phosphate group cleaved from FMN to acceptors like thiamine, pyridoxal, pyridoxamine and nucleosides resulting in the formation of their corresponding phosphate esters and nucleotides. The properties of the enzyme hydrolysing FMN and the phosphotransferase activity of the preparation are compared.
Resumo:
Infiltration experiments with the intact seeds of Bengal gram (Cicer arietinum) indicated that indole and serine are the immediate precursors of tryptophan in this legume. The enzyme, tryptophan synthetase, has been demonstrated in cell-free extracts of the resting seeds. The optimum pH of the reaction was 5.5, and the Km value for indole at a constant serine concentration of 10−4M was 0.57 × 10−4M. There was a specific requirement for pyridoxal phosphate. Heavy-metal ions were inhibitory.