54 resultados para Phylogenetic
Resumo:
Study of the evolution of species or organisms is essential for various biological applications. Evolution is typically studied at the molecular level by analyzing the mutations of DNA sequences of organisms. Techniques have been developed for building phylogenetic or evolutionary trees for a set of sequences. Though phylogenetic trees capture the overall evolutionary relationships among the sequences, they do not reveal fine-level details of the evolution. In this work, we attempt to resolve various fine-level sequence transformation details associated with a phylogenetic tree using cellular automata. In particular, our work tries to determine the cellular automata rules for neighbor-dependent mutations of segments of DNA sequences. We also determine the number of time steps needed for evolution of a progeny from an ancestor and the unknown segments of the intermediate sequences in the phylogenetic tree. Due to the existence of vast number of cellular automata rules, we have developed a grid system that performs parallel guided explorations of the rules on grid resources. We demonstrate our techniques by conducting experiments on a grid comprising machines in three countries and obtaining potentially useful statistics regarding evolutions in three HIV sequences. In particular, our work is able to verify the phenomenon of neighbor-dependent mutations and find that certain combinations of neighbor-dependent mutations, defined by a cellular automata rule, occur with greater than 90% probability. We also find the average number of time steps for mutations for some branches of phylogenetic tree over a large number of possible transformations with standard deviations less than 2.
Resumo:
Acyl carrier protein is an integral component of many cellular metabolic processes. A number of studies have reported self-acylation behavior in acyl carrier proteins. Although AM exhibit high levels of similarity in their primary and tertiary structures, self-acylation behavior is restricted to only some ACPs that can be classified into two major families based on their function. The first family of ACPs is involved in polyketide biosynthesis, whereas the second family participates in fatty acid synthesis. Facilitated by the growing number of genome sequences available for analyses, large-scale phylogenetic studies were used in these studies to uncover as to how self-acylation behavior of acyl carrier proteins is linked with the evolution of metabolic pathways in organisms. These studies show that self-acylation behavior in acyl carrier proteins was lost during the course of evolution, with certain organisms and organelles viz. plastids, retaining it for specified functions. (C) 2009 IUBMB IUBMB Life, 61(8): 853-859, 2009
Molecular phylogeny and biogeography of langurs and leaf monkeys of South Asia (Primates: Colobinae)
Resumo:
The two recently proposed taxonomies of the langurs and leaf monkeys (Subfamily Colobinae) provide different implications to our understanding of the evolution of Nilgiri and purple-faced langurs. Groves (2001) [Groves, C.P., 2001. Primate Taxonomy. Smithsonian Institute Press, Washington], placed Nilgiri and purple-faced langurs in the genus Trachypithecus, thereby suggesting disjunct distribution of the genus Trachypithecus. [Brandon-Jones, D., Eudey, A.A., Geissmann, T., Groves, C.P., Melnick, D.J., Morales, J.C., Shekelle, M., Stewart, C.-B., 2003. Asian primate classification. Int. J. Primatol. 25, 97–162] placed these langurs in the genus Semnopithecus, which suggests convergence of morphological characters in Nilgiri and purple-faced langurs with Trachypithecus. To test these scenarios, we sequenced and analyzed the mitochondrial cytochrome b gene and two nuclear DNA-encoded genes, lysozyme and protamine P1, from a variety of colobine species. All three markers support the clustering of Nilgiri and purple-faced langurs with Hanuman langur (Semnopithecus), while leaf monkeys of Southeast Asian (Trachypithecus) form a distinct clade. The phylogenetic position of capped and golden leaf monkeys is still unresolved. It is likely that this species group might have evolved due to past hybridization between Semnopithecus and Trachypithecus clades.
Resumo:
Background & objectives: Periplasmic copper and zinc superoxide dismutase (Cu,Zn-SOD or SodC) is an important component of the antioxidant shield which protects bacteria from the phagocytic oxidative burst. Cu,Zn-SODs protect Gram-negative bacteria against oxygen damage which have also been shown to contribute to the pathogenicity of these bacterial species. We report the presence of SodC in drug resistant Salmonella sp. isolated from patients suffering from enteric fever. Further sodC was amplified, cloned into Escherichia coli and the nucleotide sequence and amino acid sequence homology were compared with the standard strain Salmonella Typhimurium 14028. Methods: Salmonella enterica serovar Typhi (S. Typhi) and Salmonellaenterica serovar Paratyphi (S. Paratyphi) were isolated and identified from blood samples of the patients. The isolates were screened for the presence of Cu, Zn-SOD by PAGE using KCN as inhibitor of Cu,Zn-SOD. The gene (sodC) was amplified by PCR, cloned and sequenced. The nucleotide and amino acid sequences of sodC were compared using CLUSTAL X.Results: SodC was detected in 35 per cent of the Salmonella isolates. Amplification of the genomic DNA of S. Typhi and S. Paratyphi with sodC specific primers resulted in 519 and 515 bp amplicons respectively. Single mutational difference at position 489 was observed between thesodC of S. Typhi and S. Paratyphi while they differed at 6 positions with the sodC of S. Typhimurium 14028. The SodC amino acid sequences of the two isolates were homologous but 3 amino acid difference was observed with that of standard strain S. Typhimurium 14028.Interpretation & conclusions: The presence of SodC in pathogenic bacteria could be a novel candidate as phylogenetic marker.
Resumo:
The discovery of GH (Glycoside Hydrolase) 19 chitinases in Streptomyces sp. raises the possibility of the presence of these proteins in other bacterial species, since they were initially thought to be confined to higher plants. The present study mainly concentrates on the phylogenetic distribution and homology conservation in GH19 family chitinases. Extensive database searches are performed to identify the presence of GH19 family chitinases in the three major super kingdoms of life. Multiple sequence alignment of all the identified GH19 chitinase family members resulted in the identification of globally conserved residues. We further identified conserved sequence motifs across the major sub groups within the family. Estimation of evolutionary distance between the various bacterial and plant chitinases are carried out to better understand the pattern of evolution. Our study also supports the horizontal gene transfer theory, which states that GH19 chitinase genes are transferred from higher plants to bacteria. Further, the present study sheds light on the phylogenetic distribution and identifies unique sequence signatures that define GH19 chitinase family of proteins. The identified motifs could be used as markers to delineate uncharacterized GH19 family chitinases. The estimation of evolutionary distance between chitinase identified in plants and bacteria shows that the flowering plants are more related to chitinase in actinobacteria than that of identified in purple bacteria. We propose a model to elucidate the natural history of GH19 family chitinases.
Resumo:
Background:Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. Methodology/Principal Findings: We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses.Conclusion/Significance: Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular organization which indicates a degree of complexity and protein-protein interactions in the signaling pathways in these microbes.
Resumo:
Motivation: Chromatin-remodeling is an important event in the eukaryotic nucleus rendering nucleosomal DNA accessible for various transaction processes. Remodeling Factors facilitate the dynamic nature of chromatin through participation of the collective action of (i) ATP and (ii) Non-ATP dependent factors. Considering the importance of these factors in eukaryotes, we have developed, CREMOFAC, a dedicated and frequently updated web-database for chromatin-remodeling factors.Results: The database harbors factors from 49 different organisms reported in literature and facilitates a comprehensive search for them. In addition, it also provides in-depth information for the factors reported in the three widely studied mammals namely, human, mouse and rat. Further, information on literature, pathways and phylogenetic relationships has also been covered. The development of CREMOFAC as a central repository for chromatin-remodeling factors and the absence of such a pre-existing database heighten its utility thus making its presence indispensable.
Resumo:
The queenless ponerine ant Diacamma ceylonense and a population of Diacamma from the Nilgiri hills which we refer to as `nilgiri', exhibit interesting similarities as well as dissimilarities. Molecular phylogenetic study of these morphologically almost similar taxa has shown that D ceylonense is closely related to `nilgiri' and indicates that `nilgiri' is a recent diversion in the Diacamma phylogenetic tree. However, there is a striking behavioural difference in the way reproductive monopoly is maintained by the respective gamergates (mated egg laying workers), and there is evidence that they are genetically differentiated, suggesting a lack of gene flow To develop a better understanding of the mechanism involved in speciation of Diacamma, we have analysed karyotypes of D. ceylonense and `nilgiri' In both, we found surprising inter-individual and intra-individual karyotypic mosaicism. The observed numerical variability, both at intra-individual and inter-individual levels, does not appear to have hampered the sustainability of the chromosomal diversity in each population under study Since the related D. indicum, displays no such intra-individual or inter-Individual variability whatsoever under identical experimental conditions, these results are unlikely to he artifacts. Although no known mechanisms can account for the observed karyotypic variability of this nature, we believe that the present findings on the ants under study would provide opportunities for exciting new discoveries concerning the origin, maintenance and significance of intra-individual and inter-individual karyotypic mosaicism.
Resumo:
The 3' terminal 1255 nt sequence of Physalis mottle virus (PhMV) genomic RNA has been determined from a set of overlapping cDNA clones. The open reading frame (ORF) at the 3' terminus corresponds to the amino acid sequence of the coat protein (CP) determined earlier except for the absence of the dipeptide, Lys-Leu, at position 110-111. In addiition, the sequence upstream of the CP gene contains the message coding for 178 amino acid residues of the C-terminus of the putative replicase protein (RP). The sequence downstream of the CP gene contains an untranslated region whose terminal 80 nucleotides can be folded into a characteristic tRNA-like structure. A phylogenetic tree constructed after aligning separately the sequence of the CP, the replicase protein (RP) and the tRNA-like structure determined in this study with the corresponding sequences of other tymoviruses shows that PhMV wrongly named belladonna mottle virus [BDMV(I)] is a separate tymovirus and not another strain of BDMV(E) as originally envisaged. The phylogenetic tree in all the three cases is identical showing that any subset of genomic sequence of sufficient length can be used for establishing evolutionary relationships among tymoviruses.
Resumo:
The boxicity of a graph G, denoted as boxi(G), is defined as the minimum integer t such that G is an intersection graph of axis-parallel t-dimensional boxes. A graph G is a k-leaf power if there exists a tree T such that the leaves of the tree correspond to the vertices of G and two vertices in G are adjacent if and only if their corresponding leaves in T are at a distance of at most k. Leaf powers are used in the construction of phylogenetic trees in evolutionary biology and have been studied in many recent papers. We show that for a k-leaf power G, boxi(G) a parts per thousand currency sign k-1. We also show the tightness of this bound by constructing a k-leaf power with boxicity equal to k-1. This result implies that there exist strongly chordal graphs with arbitrarily high boxicity which is somewhat counterintuitive.
Resumo:
The construction and characterization of two genome-specific recombinant DNA clones from B. nigra are described. Southern analysis showed that the two clones belong to a dispersed repeat family. They differ from each other in their length, distribution and sequence, though the average GC content is nearly the same (45%). These B genome-specific repeats have been used to analyse the phylogenetic relationships between cultivated and wild species of the family Brassicaceae.
Resumo:
Numerous morphology-based classification schemes have been proposed for langurs and leaf monkeys of South Asia but there is very little agreement between them. An incorrect classification scheme when used as a basis for biogeographic studies can support erroneous hypotheses. Further, lack of taxonomic resolution will also confound conservation efforts, given that conservation biologists use traditional morphology-based-classification schemes to prioritize species for conservation. Here, I have revisited recent molecular phylogenetic studies done on langurs and leaf monkeys of South Asia. Results from these studies are in turn used to derive a rational and scientific basis for prioritizing species for conservation. Molecular data support the classification of langurs of the Indian subcontinent-Hanuman, Nilgiri and purple-faced langurs-in the genus Semnopithecus, whereas Phayre's leaf monkey along with other Southeast Asian leaf monkeys form another distinct clade (Trachypithecus). The phylogenetic position of capped and golden langurs remains unresolved. Molecular data suggest that they are closely related to each other but this group might have evolved through past hybridization between Semnopithecus and Trachypithecus. Additionally, genetic data also support the splitting of the so-called Hanuman langurs into at least three species. The scores for taxonomic uniqueness of langurs and leaf monkeys of South Asia were revised using this molecular phylogeny-based classification. According to the revised scores, Phayres leaf monkey and golden langur are priority species for conservation followed by capped and Nilgiri langurs.
Resumo:
NSP3, an acidic nonstructural protein, encoded by gene 7 has been implicated as the key player in the assembly of the 11 viral plus-strand RNAs into the early replication intermediates during rotavirus morphogenesis. To date, the sequence or NSP3 from only three animal rotaviruses (SA11, SA114F, and bovine UK) has been determined and that from a human strain has not been reported. To determine the genetic diversity among gene 7 alleles from group A rotaviruses, the nucleotide sequence of the NSP3 gene from 13 strains belonging to nine different G serotypes, from both humans and animals, has been determined. Based on the amino acid sequence identity as well as phylogenetic analysis, NSP3 from group A rotaviruses falls into three evolutionarily related groups, i.e., the SA11 group, the Wa group, and the S2 group. The SA 11/SA114F gene appears to have a distant ancestral origin from that of the others and codes for a polypeptide of 315 amino acids (aa) in length. NSP3 from all other group A rotaviruses is only 313 aa in length because of a 2-amino-acid deletion near the carboxy-terminus, While the SA114F gene has the longest 3' untranslated region (UTR) of 132 nucleotides, that from other strains suffered deletions of varying lengths at two positions downstream of the translational termination codon. In spite of the divergence of the nucleotide (nt) sequence in the protein coding region, a stretch of about 80 nt in the 3' UTR is highly conserved in the NSP3 gene from all the strains. This conserved sequence in the 3' UTR might play an important role in the regulation of expression of the NSP3 gene. (C) 1995 Academic Press, Inc.
Resumo:
Repeats are two or more contiguous segments of amino acid residues that are believed to have arisen as a result of intragenic duplication, recombination and mutation events. These repeats can be utilized for protein structure prediction and can provide insights into the protein evolution and phylogenetic relationship. Therefore, to aid structural biologists and phylogeneticists in their research, a computing resource (a web server and a database), Repeats in Protein Sequences (RPS), has been created. Using RPS, users can obtain useful information regarding identical, similar and distant repeats (of varying lengths) in protein sequences. In addition, users can check the frequency of occurrence of the repeats in sequence databases such as the Genome Database, PIR and SWISS-PROT and among the protein sequences available in the Protein Data Bank archive. Furthermore, users can view the three-dimensional structure of the repeats using the Java visualization plug-in Jmol. The proposed computing resource can be accessed over the World Wide Web at http://bioserver1.physics.iisc.ernet.in/rps/.
Resumo:
Given that peninsular India was part of the Gondwanan super continent, part of its current biota has Gondwanan origin. To determine the Gondwanan component of the peninsular Indian biota, a large number of species spanning diverse taxonomic groups need to be sampled from multiple, if not all, of the former Gondwanan fragments. Such a large scale phylogenetic approach will be time consuming and resource intensive. Here, we explore the utility of a limited sampling approach, wherein sampling is confined to one of the Gondwanan fragments (peninsular India), in identifying putative Gondwanan elements. To this end, samples of Scolopendrid centipedes from Western Ghats region of peninsular India were subjected to molecular phylogenetic and dating analyses. The resulting phylogenetic tree supported monophyly of the family Scolopendridae which was in turn split into two clades constituting tribes Otostigmini and Scolopendrini-Asanadini. Bayesian divergence date estimates suggested that the earliest diversifications within various genera were between 86 and 73 mya, indicating that these genera might have Gondwanan origin. In particular, at least four genera of Scolopendrid centipedes, Scolopendra, Cormocephalus, Rhysida and Digitipes, might have undergone diversification on the drifting peninsular India during the Late Cretaceous. These putative Gondwanan taxa can be subjected to more extensive sampling to confirm their Gondwanan origin. (C) 2011 Elsevier Inc. All rights reserved.