38 resultados para Patrick Rothfuss


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, there has been an upsurge of research interest in cooperative wireless communications in both academia and industry. This article presents a simple overview of the pivotal topics in both mobile station (MS)- and base station (BS)- assisted cooperation in the context of cellular radio systems. Owing to the ever-increasing amount of literature in this particular field, this article is by no means exhaustive, but is intended to serve as a roadmap by assembling a representative sample of recent results and to stimulate further research. The emphasis is initially on relay-base cooperation, relying on network coding, followed by the design of cross-layer cooperative protocols conceived for MS cooperation and the concept of coalition network element (CNE)-assisted BS cooperation. Then, a range of complexity and backhaul traffic reduction techniques that have been proposed for BS cooperation are reviewed. A more detailed discussion is provided in the context of MS cooperation concerning the pros and cons of dispensing with high-complexity, power-hungry channel estimation. Finally, generalized design guidelines, conceived for cooperative wireless communications, are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tim23 is an essential channel-forming subunit of the presequence translocase recruiting multiple components for assembly of the core complex, thereby regulating the protein translocation process. However, understanding of the precise interaction of subunits associating with Tim23 remains largely elusive. Our findings highlight that transmembrane helix 1 (TM1) is required for homodimerization of Tim23, while, together with TM2, it is involved in preprotein binding within the channel. Based on our evidence, we predict that the TM1 and TM2 from each dimer are involved in the formation of the central translocation pore, aided by Tim17. Furthermore, TM2 is also involved in the recruitment of Tim21 and the presequence-associated motor (PAM) subcomplex to the Tim23 channel, while the matrix-exposed loop L1 generates specificity in their association with the core complex. Strikingly, our findings indicate that the C-terminal sequence of Tim23 is dispensable for growth and functions as an inhibitor for binding of Tim21. Our model conceptually explains the cooperative function between Tam41 and Pam17 subunits, while the antagonistic activity of Tim21 predominantly determines the bound and free forms of the PAM subcomplex during import.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolutionary diversity of the HSP70 gene family at the genetic level has generated complex structural variations leading to altered functional specificity and mode of regulation in different cellular compartments. By utilizing Saccharomyces cerevisiae as a model system for better understanding the global functional cooperativity between Hsp70 paralogs, we have dissected the differences in functional properties at the biochemical level between mitochondrial heat shock protein 70 (mtHsp70) Ssc1 and an uncharacterized Ssc3 paralog. Based on the evolutionary origin of Ssc3 and a high degree of sequence homology with Ssc1, it has been proposed that both have a close functional overlap in the mitochondrial matrix. Surprisingly, our results demonstrate that there is no functional cross-talk between Ssc1 and Ssc3 paralogs. The lack of in vivo functional overlap is due to altered conformation and significant lower stability associated with Ssc3. The substrate-binding domain of Ssc3 showed poor affinity toward mitochondrial client proteins and Tim44 due to the open conformation in ADP-bound state. In addition to that, the nucleotide-binding domain of Ssc3 showed an altered regulation by the Mge1 co-chaperone due to a high degree of conformational plasticity, which strongly promotes aggregation. Besides, Ssc3 possesses a dysfunctional inter-domain interface thus rendering it unable to perform functions similar to generic Hsp70s. Moreover, we have identified the critical amino acid sequence of Ssc1 and Ssc3 that can “make or break” mtHsp70 chaperone function. Together, our analysis provides the first evidence to show that the nucleotide-binding domain of mtHsp70s plays a critical role in determining the functional specificity among paralogs and orthologs across kingdoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quinary chalcogenide compounds Cu2.1Zn0.9Sn1-xInxSe4 (0 <= x <= 0.1) were prepared by melting (1170K) followed by annealing (773 K) for 172 h. Powder X-ray diffraction (XRD) data accompanied by electron probe microanalysis (EPMA) and Raman spectra of all the samples confirmed the formation of a tetragonal kesterite structure with Cu2FeSnS4-type. The thermoelectric properties of all the samples were measured as a function of temperature in the range of 300-780K. The electrical resistivity of all the samples exhibits metallic-like behavior. The positive values of the Seebeck coefficient and the Hall coefficient reveal that holes are the majority charge carriers. The codoping of copper and indium leads to a significant increase of the electrical resistivity and the Seebeck coefficient as a function of temperature above 650 K. The thermal conductivity of all the samples decreases with increasing temperature. Lattice thermal conductivity is not significantly modified as the doping content may infer negligible mass fluctuation scattering for copper/zinc and indium/tin substitution. Even though, the power factors (S-2/rho) of indium-doped samples Cu2.1Zn0.9Sn1-xInxSe4 (x = 0.05, 0.075) are almost the same, the maximum zT = 0.45 at 773K was obtained for Cu2.1Zn0.9Sn0.925In0.075Se4 due to its smaller value of thermal conductivity. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondria are indispensable organelles implicated in multiple aspects of cellular processes, including tumorigenesis. Heat shock proteins play a critical regulatory role in accurately delivering the nucleus-encoded proteins through membrane-bound presequence translocase (Tim23 complex) machinery. Although altered expression of mammalian presequence translocase components had been previously associated with malignant phenotypes, the overall organization of Tim23 complexes is still unsolved. In this report, we show the existence of three distinct Tim23 complexes, namely, B1, B2, and A, involved in the maintenance of normal mitochondrial function. Our data highlight the importance of Magmas as a regulator of translocase function and in dynamically recruiting the J-proteins DnaJC19 and DnaJC15 to individual translocases. The basic housekeeping function involves translocases B1 and B2 composed of Tim17b isoforms along with DnaJC19, whereas translocase A is nonessential and has a central role in oncogenesis. Translocase B, having a normal import rate, is essential for constitutive mitochondrial functions such as maintenance of electron transport chain complex activity, organellar morphology, iron-sulfur cluster protein biogenesis, and mitochondrial DNA. In contrast, translocase A, though dispensable for housekeeping functions with a comparatively lower import rate, plays a specific role in translocating oncoproteins lacking presequence, leading to reprogrammed mitochondrial functions and hence establishing a possible link between the TIM23 complex and tumorigenicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Muscle-specific deficiency of iron-sulfur (Fe-S) cluster scaffold protein (ISCU) leads to myopathy. Results: Cells carrying the myopathy-associated G50E ISCU mutation demonstrate impaired Fe-S cluster biogenesis and mitochondrial dysfunction. Conclusion: Reduced mitochondrial respiration as a result of diminished Fe-S cluster synthesis results in muscle weakness in myopathy patients. Significance: The molecular mechanism behind disease progression should provide invaluable information to combat ISCU myopathy. Iron-sulfur (Fe-S) clusters are versatile cofactors involved in regulating multiple physiological activities, including energy generation through cellular respiration. Initially, the Fe-S clusters are assembled on a conserved scaffold protein, iron-sulfur cluster scaffold protein (ISCU), in coordination with iron and sulfur donor proteins in human mitochondria. Loss of ISCU function leads to myopathy, characterized by muscle wasting and cardiac hypertrophy. In addition to the homozygous ISCU mutation (g.7044GC), compound heterozygous patients with severe myopathy have been identified to carry the c.149GA missense mutation converting the glycine 50 residue to glutamate. However, the physiological defects and molecular mechanism associated with G50E mutation have not been elucidated. In this report, we uncover mechanistic insights concerning how the G50E ISCU mutation in humans leads to the development of severe ISCU myopathy, using a human cell line and yeast as the model systems. The biochemical results highlight that the G50E mutation results in compromised interaction with the sulfur donor NFS1 and the J-protein HSCB, thus impairing the rate of Fe-S cluster synthesis. As a result, electron transport chain complexes show significant reduction in their redox properties, leading to loss of cellular respiration. Furthermore, the G50E mutant mitochondria display enhancement in iron level and reactive oxygen species, thereby causing oxidative stress leading to impairment in the mitochondrial functions. Thus, our findings provide compelling evidence that the respiration defect due to impaired biogenesis of Fe-S clusters in myopathy patients leads to manifestation of complex clinical symptoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-term surveys of entire communities of species are needed to measure fluctuations in natural populations and elucidate the mechanisms driving population dynamics and community assembly. We analysed changes in abundance of over 4000 tree species in 12 forests across the world over periods of 6-28years. Abundance fluctuations in all forests are large and consistent with population dynamics models in which temporal environmental variance plays a central role. At some sites we identify clear environmental drivers, such as fire and drought, that could underlie these patterns, but at other sites there is a need for further research to identify drivers. In addition, cross-site comparisons showed that abundance fluctuations were smaller at species-rich sites, consistent with the idea that stable environmental conditions promote higher diversity. Much community ecology theory emphasises demographic variance and niche stabilisation; we encourage the development of theory in which temporal environmental variance plays a central role.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondrial Hsp70 (mtHsp70) is essential for a vast repertoire of functions, including protein import, and requires effective interdomain communication for efficient partner-protein interactions. However, the in vivo functional significance of allosteric regulation in eukaryotes is poorly defined. Using integrated biochemical and yeast genetic approaches, we provide compelling evidence that a conserved substrate-binding domain (SBD) loop, L-4,L-5, plays a critical role in allosteric communication governing mtHsp70 chaperone functions across species. In yeast, a temperature-sensitive L-4,L-5 mutation (E467A) disrupts bidirectional domain communication, leading to compromised protein import and mitochondrial function. Loop L-4,L-5 functions synergistically with the linker in modulating the allosteric interface and conformational transitions between SBD and the nucleotide-binding domain (NBD), thus regulating interdomain communication. Second-site intragenic suppressors of E467A isolated within the SBD suppress domain communication defects by conformationally altering the allosteric interface, thereby restoring import and growth phenotypes. Strikingly, the suppressor mutations highlight that restoration of communication from NBD to SBD alone is the minimum essential requirement for effective in vivo function when primed at higher basal ATPase activity, mimicking the J-protein-bound state. Together these findings provide the first mechanistic insights into critical regions within the SBD of mtHsp70s regulating interdomain communication, thus highlighting its importance in protein translocation and mitochondrial biogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanomaterials with enzyme-like properties has attracted significant interest, although limited information is available on their biological activities in cells. Here we show that V2O5 nanowires (Vn) functionally mimic the antioxidant enzyme glutathione peroxidase by using cellular glutathione. Although bulk V2O5 is known to be toxic to the cells, the property is altered when converted into a nanomaterial form. The Vn nanozymes readily internalize into mammalian cells of multiple origin (kidney, neuronal, prostate, cervical) and exhibit robust enzyme-like activity by scavenging the reactive oxygen species when challenged against intrinsic and extrinsic oxidative stress. The Vn nanozymes fully restore the redox balance without perturbing the cellular antioxidant defense, thus providing an important cytoprotection for biomolecules against harmful oxidative damage. Based on our findings, we envision that biocompatible Vn nanowires can provide future therapeutic potential to prevent ageing, cardiac disorders and several neurological conditions, including Parkinson's and Alzheimer's disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amphibians exhibit extraordinarily diverse sets of reproductive strategies among vertebrates. Understanding life history strategies in an evolutionary framework is lacking for many amphibian species in the tropics. Here, we report a novel reproductive mode where adult frogs enter hollow internodes of bamboo via a small opening, deposit direct developing eggs, and provide parental care. This behaviour is observed in two species of the frog genus Raorchestes. The first description of this unique life history and details of nest site characteristics and embryo development are provided along with ecological comparisons. Evolution of novel reproductive modes and parental care are discussed in context of natural selection. Dearth of natural history information on amphibians in the Western Ghats and much of the South-East Asian region is highlighted with suggestions for further studies.(c) 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114, 1-11.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25ha), all stems 1cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 degrees S-61 degrees N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 degrees C), changes in precipitation (up to +/- 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8g Nm(-2)yr(-1) and 3.1g Sm(-2)yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natrix clerki Wall, 1925, previously known from its sole holotype and considered a synonym of Amphiesma parallelum (Boulenger, 1890), is resurrected in the genus Amphiesma on the basis of the analysis of morphological variation in 28 specimens of ``Amphiesma parallelum'' auctorum, plus six living, unvouchered specimens discovered in Arunachal Pradesh and Nagaland, India, and one vouchered specimen from Talle Valley in Arunachal Pradesh. Specimens from northeast India (Nagaland), northern Myanmar, and China (Yunnan), previously identified as Amphiesma parallelum either in the literature or in museum's catalogues, are also here referred to A. clerki. The holotype of Amphiesma clerki is redescribed. As a consequence, the definition of Amphiesma parallelum is modified. A. parallelum inhabits the Khasi Hills and Naga Hills in Northeast India, whereas A. clerki has a wider range in the Eastern Himalayas, northern Myanmar and Yunnan (China). Amphiesma clerki differs from A. parallelum by its longer tail, dorsal scales more strongly keeled, scales of the first dorsal scale row strongly keeled vs. smooth, a postocular streak not interrupted at the level of the neck, and a much more vivid pattern on a darker background colour. Characters of species of the Amphiesma parallelum group, i.e. A. clerki, A. parallelum, A. bitaeniatum, A. platyceps and A. sieboldii are compared. A key to this group is provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between similar to 40,000 and similar to 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of similar to 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of similar to 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.