61 resultados para Paths and cycles (Graph theory).


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let G(V, E) be a simple, undirected graph where V is the set of vertices and E is the set of edges. A b-dimensional cube is a Cartesian product l(1) x l(2) x ... x l(b), where each l(i) is a closed interval of unit length on the real line. The cub/city of G, denoted by cub(G), is the minimum positive integer b such that the vertices in G can be mapped to axis parallel b-dimensional cubes in such a way that two vertices are adjacent in G if and only if their assigned cubes intersect. An interval graph is a graph that can be represented as the intersection of intervals on the real line-i.e. the vertices of an interval graph can be mapped to intervals on the real line such that two vertices are adjacent if and only if their corresponding intervals overlap. Suppose S(m) denotes a star graph on m+1 nodes. We define claw number psi(G) of the graph to be the largest positive integer m such that S(m) is an induced subgraph of G. It can be easily shown that the cubicity of any graph is at least log(2) psi(G)]. In this article, we show that for an interval graph G log(2) psi(G)-]<= cub(G)<=log(2) psi(G)]+2. It is not clear whether the upper bound of log(2) psi(G)]+2 is tight: till now we are unable to find any interval graph with cub(G)> (log(2)psi(G)]. We also show that for an interval graph G, cub(G) <= log(2) alpha], where alpha is the independence number of G. Therefore, in the special case of psi(G)=alpha, cub(G) is exactly log(2) alpha(2)]. The concept of cubicity can be generalized by considering boxes instead of cubes. A b-dimensional box is a Cartesian product l(1) x l(2) x ... x l(b), where each I is a closed interval on the real line. The boxicity of a graph, denoted box(G), is the minimum k such that G is the intersection graph of k-dimensional boxes. It is clear that box(G)<= cub(G). From the above result, it follows that for any graph G, cub(G) <= box(G)log(2) alpha]. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 65: 323-333, 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An (alpha, beta)-spanner of an unweighted graph G is a subgraph H that distorts distances in G up to a multiplicative factor of a and an additive term beta. It is well known that any graph contains a (multiplicative) (2k - 1, 0)-spanner of size O(n(1+1/k)) and an (additive) (1, 2)-spanner of size O(n(3/2)). However no other additive spanners are known to exist. In this article we develop a couple of new techniques for constructing (alpha, beta)-spanners. Our first result is an additive (1, 6)-spanner of size O(n(4/3)). The construction algorithm can be understood as an economical agent that assigns costs and values to paths in the graph, purchasing affordable paths and ignoring expensive ones, which are intuitively well approximated by paths already purchased. We show that this path buying algorithm can be parameterized in different ways to yield other sparseness-distortion tradeoffs. Our second result addresses the problem of which (alpha, beta)-spanners can be computed efficiently, ideally in linear time. We show that, for any k, a (k, k - 1)-spanner with size O(kn(1+1/k)) can be found in linear time, and, further, that in a distributed network the algorithm terminates in a constant number of rounds. Previous spanner constructions with similar performance had roughly twice the multiplicative distortion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A claw is an induced subgraph isomorphic to K-1,K-3. The claw-point is the point of degree 3 in a claw. A graph is called p-claw-free when no p-cycle has a claw-point on it. It is proved that for p greater than or equal to 4, p-claw-free graphs containing at least one chordless p-cycle are edge reconstructible. It is also proved that chordal graphs are edge reconstructible. These two results together imply the edge reconstructibility of claw-free graphs. A simple proof of vertex reconstructibility of P-4-reducible graphs is also presented. (C) 1995 John Wiley and Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider single-source single-sink (ss-ss) multi-hop relay networks, with slow-fading links and single-antenna half-duplex relay nodes. While two-hop cooperative relay networks have been studied in great detail in terms of the diversity-multiplexing tradeoff (DMT), few results are available for more general networks. In this paper, we identify two families of networks that are multi-hop generalizations of the two-hop network: K-Parallel-Path (KPP)networks and layered networks.KPP networks, can be viewed as the union of K node-disjoint parallel relaying paths, each of length greater than one. KPP networks are then generalized to KPP(I) networks, which permit interference between paths and to KPP(D) networks, which possess a direct link from source to sink. We characterize the DMT of these families of networks completely for K > 3. Layered networks are networks comprising of layers of relays with edges existing only between adjacent layers, with more than one relay in each layer. We prove that a linear DMT between the maximum diversity dmax and the maximum multiplexing gain of 1 is achievable for single-antenna fully-connected layered networks. This is shown to be equal to the optimal DMT if the number of relaying layers is less than 4.For multiple-antenna KPP and layered networks, we provide an achievable DMT, which is significantly better than known lower bounds for half duplex networks.For arbitrary multi-terminal wireless networks with multiple source-sink pairs, the maximum achievable diversity is shown to be equal to the min-cut between the corresponding source and the sink, irrespective of whether the network has half-duplex or full-duplex relays. For arbitrary ss-ss single-antenna directed acyclic networks with full-duplex relays, we prove that a linear tradeoff between maximum diversity and maximum multiplexing gain is achievable.Along the way, we derive the optimal DMT of a generalized parallel channel and derive lower bounds for the DMT of triangular channel matrices, which are useful in DMT computation of various protocols. We also give alternative and often simpler proofs of several existing results and show that codes achieving full diversity on a MIMO Rayleigh fading channel achieve full diversity on arbitrary fading channels. All protocols in this paper are explicit and use only amplify-and-forward (AF) relaying. We also construct codes with short block-lengths based on cyclic division algebras that achieve the optimal DMT for all the proposed schemes.Two key implications of the results in the paper are that the half-duplex constraint does not entail any rate loss for a large class of cooperative networks and that simple AF protocols are often sufficient to attain the optimal DMT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a kinematic theory for Hoberman and other similar foldable linkages. By recognizing that the building blocks of such linkages can be modeled as planar linkages, different classes of possible solutions are systematically obtained including some novel arrangements. Criteria for foldability are arrived by analyzing the algebraic locus of the coupler curve of a PRRP linkage. They help explain generalized Hoberman and other mechanisms reported in the literature. New properties of such mechanisms including the extent of foldability, shape-preservation of the inner and outer profiles, multi-segmented assemblies and heterogeneous circumferential arrangements are derived. The design equations derived here make the conception of even complex planar radially foldable mechanisms systematic and easy. Representative examples are presented to illustrate the usage of the design equations and the kinematic theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). A graph is called 2-degenerate if any of its induced subgraph has a vertex of degree at most 2. The class of 2-degenerate graphs properly contains seriesparallel graphs, outerplanar graphs, non - regular subcubic graphs, planar graphs of girth at least 6 and circle graphs of girth at least 5 as subclasses. It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a'(G)<=Delta + 2, where Delta = Delta(G) denotes the maximum degree of the graph. We prove the conjecture for 2-degenerate graphs. In fact we prove a stronger bound: we prove that if G is a 2-degenerate graph with maximum degree ?, then a'(G)<=Delta + 1. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 68:1-27, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we review classical and modern Galois theory with historical evolution and prove a criterion of Galois for solvability of an irreducible separable polynomial of prime degree over an arbitrary field k and give many illustrative examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last few decades have witnessed application of graph theory and topological indices derived from molecular graph in structure-activity analysis. Such applications are based on regression and various multivariate analyses. Most of the topological indices are computed for the whole molecule and used as descriptors for explaining properties/activities of chemical compounds. However, some substructural descriptors in the form of topological distance based vertex indices have been found to be useful in identifying activity related substructures and in predicting pharmacological and toxicological activities of bioactive compounds. Another important aspect of drug discovery e. g. designing novel pharmaceutical candidates could also be done from the distance distribution associated with such vertex indices. In this article, we will review the development and applications of this approach both in activity prediction as well as in designing novel compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The van der Waals and Platteuw (vdVVP) theory has been successfully used to model the thermodynamics of gas hydrates. However, earlier studies have shown that this could be due to the presence of a large number of adjustable parameters whose values are obtained through regression with experimental data. To test this assertion, we carry out a systematic and rigorous study of the performance of various models of vdWP theory that have been proposed over the years. The hydrate phase equilibrium data used for this study is obtained from Monte Carlo molecular simulations of methane hydrates. The parameters of the vdWP theory are regressed from this equilibrium data and compared with their true values obtained directly from simulations. This comparison reveals that (i) methane-water interactions beyond the first cage and methane-methane interactions make a significant contribution to the partition function and thus cannot be neglected, (ii) the rigorous Monte Carlo integration should be used to evaluate the Langmuir constant instead of the spherical smoothed cell approximation, (iii) the parameter values describing the methane-water interactions cannot be correctly regressed from the equilibrium data using the vdVVP theory in its present form, (iv) the regressed empty hydrate property values closely match their true values irrespective of the level of rigor in the theory, and (v) the flexibility of the water lattice forming the hydrate phase needs to be incorporated in the vdWP theory. Since methane is among the simplest of hydrate forming molecules, the conclusions from this study should also hold true for more complicated hydrate guest molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rainbow connection number of a connected graph is the minimum number of colors needed to color its edges, so that every pair of its vertices is connected by at least one path in which no two edges are colored the same. In this article we show that for every connected graph on n vertices with minimum degree delta, the rainbow connection number is upper bounded by 3n/(delta + 1) + 3. This solves an open problem from Schiermeyer (Combinatorial Algorithms, Springer, Berlin/Hiedelberg, 2009, pp. 432437), improving the previously best known bound of 20n/delta (J Graph Theory 63 (2010), 185191). This bound is tight up to additive factors by a construction mentioned in Caro et al. (Electr J Combin 15(R57) (2008), 1). As an intermediate step we obtain an upper bound of 3n/(delta + 1) - 2 on the size of a connected two-step dominating set in a connected graph of order n and minimum degree d. This bound is tight up to an additive constant of 2. This result may be of independent interest. We also show that for every connected graph G with minimum degree at least 2, the rainbow connection number, rc(G), is upper bounded by Gc(G) + 2, where Gc(G) is the connected domination number of G. Bounds of the form diameter(G)?rc(G)?diameter(G) + c, 1?c?4, for many special graph classes follow as easy corollaries from this result. This includes interval graphs, asteroidal triple-free graphs, circular arc graphs, threshold graphs, and chain graphs all with minimum degree delta at least 2 and connected. We also show that every bridge-less chordal graph G has rc(G)?3.radius(G). In most of these cases, we also demonstrate the tightness of the bounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Berge's elegant dipath partition conjecture from 1982 states that in a dipath partition P of the vertex set of a digraph minimizing , there exists a collection Ck of k disjoint independent sets, where each dipath P?P meets exactly min{|P|, k} of the independent sets in C. This conjecture extends Linial's conjecture, the GreeneKleitman Theorem and Dilworth's Theorem for all digraphs. The conjecture is known to be true for acyclic digraphs. For general digraphs, it is known for k=1 by the GallaiMilgram Theorem, for k?? (where ?is the number of vertices in the longest dipath in the graph), by the GallaiRoy Theorem, and when the optimal path partition P contains only dipaths P with |P|?k. Recently, it was proved (Eur J Combin (2007)) for k=2. There was no proof that covers all the known cases of Berge's conjecture. In this article, we give an algorithmic proof of a stronger version of the conjecture for acyclic digraphs, using network flows, which covers all the known cases, except the case k=2, and the new, unknown case, of k=?-1 for all digraphs. So far, there has been no proof that unified all these cases. This proof gives hope for finding a proof for all k.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a'(G) ? ? + 2, where ? = ?(G) denotes the maximum degree of the graph. If every induced subgraph H of G satisfies the condition |E(H)| ? 2|V(H)|-1, we say that the graph G satisfies Property A. In this article, we prove that if G satisfies Property A, then a'(G) ? ? + 3. Triangle-free planar graphs satisfy Property A. We infer that a'(G) ? ? + 3, if G is a triangle-free planar graph. Another class of graph which satisfies Property A is 2-fold graphs (union of two forests). (C) 2011 Wiley Periodicals, Inc. J Graph Theory

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the rotational motion of an elongated nanoscale object in a fluid under an external torque. The experimentally observed dynamics could be understood from analytical solutions of the Stokes equation, with explicit formulae derived for the dynamical states as a function of the object dimensions and the parameters defining the external torque. Under certain conditions, multiple analytical solutions to the Stokes equations exist, which have been investigated through numerical analysis of their stability against small perturbations and their sensitivity towards initial conditions. These experimental results and analytical formulae are general enough to be applicable to the rotational motion of any isolated elongated object at low Reynolds numbers, and could be useful in the design of non-spherical nanostructures for diverse applications pertaining to microfluidics and nanoscale propulsion technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolism is a defining feature of life, and its study is important to understand how a cell works, alterations that lead to disease and for applications in drug discovery. From a systems perspective, metabolism can be represented as a network that captures all the metabolites as nodes and the inter-conversions among pairs of them as edges. Such an abstraction enables the networks to be studied by applying graph theory, particularly, to infer the flow of chemical information in the networks by identifying relevant metabolic pathways. In this study, different weighting schemes are used to illustrate that appropriately weighted networks can capture the quantitative cellular dynamics quite accurately. Thus, the networks now combine the elegance and simplicity of representation of the system and ease of analysing metabolic graphs. Metabolic routes or paths determined by this therefore are likely to be more biologically meaningful. The usefulness of the approach is demonstrated with two examples, first for understanding bacterial stress response and second for studying metabolic alterations that occurs in cancer cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents for the first time a fully computerized method for structural synthesis of geared kinematic chains which can be used to derive epicyclic gear drives. The method has been formulated on the basis of representing these chains by their graphs, the graphs being in turn represented algebraically by their vertex-vertex incidence matrices. It has thus been possible to make advantageous use of concepts and results from graph theory to develop a method amenable for implementation on a digital computer. The computerized method has been applied to the structural synthesis of single-freedom geared kinematic chains with up to four gear pairs, and the results obtained thereform are presented and discussed.