23 resultados para Pathological


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Troponin proteins in cooperative interaction with tropomyosin are responsible for controlling the contraction of the striated muscles in response to changes in the intracellular calcium concentration. Contractility of the muscle is determined by the constituent protein isoforms, and the isoforms can switch over from one form to another depending on physiological demands and pathological conditions. In Drosophila, a majority of the myofibrillar proteins in the indirect flight muscles (IFMs) undergo post-transcriptional and post-translational isoform changes during pupal to adult metamorphosis to meet the high energy and mechanical demands of flight. Using a newly generated Gal4 strain (UH3-Gal4) which is expressed exclusively in the IFMs, during later stages of development, we have looked at the developmental and functional importance of each of the troponin subunits (troponin-I, troponin-T and troponin-C) and their isoforms. We show that all the troponin subunits are required for normal myofibril assembly and flight, except for the troponin-C isoform 1 (TnC1). Moreover, rescue experiments conducted with troponin-I embryonic isoform in the IFMs, where flies were rendered flightless, show developmental and functional differences of TnI isoforms and importance of maintaining the right isoform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RAGs (recombination activating genes) are responsible for the generation of antigen receptor diversity through the process of combinatorial joining of different V (variable), D (diversity) and J (joining) gene segments. In addition to its physiological property, wherein RAG functions as a sequence-specific nuclease, it can also act as a structure-specific nuclease leading to genomic instability and cancer. In the present study, we investigate the factors that regulate RAG cleavage on non-B DNA structures. We find that RAG binding and cleavage on heteroduplex DNA is dependent on the length of the double-stranded flanking region. Besides, the immediate flanking double-stranded region regulates RAG activity in a sequence-dependent manner. Interestingly, the cleavage efficiency of RAGs at the heteroduplex region is influenced by the phasing of DNA. Thus, our results suggest that sequence, length and phase positions of the DNA can affect the efficiency of RAG cleavage when it acts as a structure-specific nuclease. These findings provide novel insights on the regulation of the pathological functions of RAGs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boswellia papyrifera and Boswellia carterii released from smoke contaminate indoor environment and consequently adversely affect humans as evidenced by respiratory disturbances. The aim of this study was to determine the effects of these plants on pathological and biochemical changes in vas deferens of albino rats. Animals were administered 4g/kg body weight B. papyrifera and B. carterii daily for 120days along with controls. Significant changes were observed in epithelial cell types and some cells showed signs of degeneration. The ultrastructural studies revealed marked changes in cytoplasmic organelles. Microvilli were missing and lysosomes were found in the cytoplasm. In addition, all treated groups plasma fructose and other biochemical parameters were decreased indicating reduced energy necessary for motility and contractility of spermatozoa. Many spermatozoa were disorganized and agglomerated. Data suggest that smoke from these plants adversely affects vas deferens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mycobacterium tuberculosis employs various strategies to modulate host immune responses to facilitate its persistence in macrophages. The M. tuberculosis cell wall contains numerous glycoproteins with unknown roles in pathogenesis. Here, by using Concanavalin A and LC-MS analysis, we identified a novel mannosylated glycoprotein phosphoribosyltransferase, encoded by Rv3242c from M. tuberculosis cell walls. Homology modeling, bioinformatic analyses, and an assay of phosphoribosyltransferase activity in Mycobacterium smegmatis expressing recombinant Rv3242c (MsmRv3242c) confirmed the mass spectrometry data. Using Mycobacterium marinum-zebrafish and the surrogate MsmRv3242c infection models, we proved that phosphoribosyltransferase is involved in mycobacterial virulence. Histological and infection assays showed that the M. marinum mimG mutant, an Rv3242c orthologue in a pathogenic M. marinum strain, was strongly attenuated in adult zebrafish and also survived less in macrophages. In contrast, infection with wild type and the complemented Delta mimG: Rv3242c M. marinum strains showed prominent pathological features, such as severe emaciation, skin lesions, hemorrhaging, and more zebrafish death. Similarly, recombinant Msm Rv3242c bacteria showed increased invasion in non-phagocytic epithelial cells and longer intracellular survival in macrophages as compared with wild type and vector control M. smegmatis strains. Further mechanistic studies revealed that the Rv3242c- and mimG-mediated enhancement of intramacrophagic survival was due to inhibition of autophagy, reactive oxygen species, and reduced activities of superoxide dismutase and catalase enzymes. Infection with MsmRv3242c also activated the MAPK pathway, NF-kappa B, and inflammatory cytokines. In summary, we show that a novel mycobacterial mannosylated phosphoribosyltransferase acts as a virulence and immunomodulatory factor, suggesting that it may constitute a novel target for antimycobacterial drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exposure of oral cavity to areca nut is associated with several pathological conditions including oral submucous fibrosis (OSF). Histopathologically OSF is characterized by epithelial atrophy, chronic inflammation, juxtaepithelial hyalinization, leading to fibrosis of submucosal tissue and affects 0.5% of the population in the Indian subcontinent. As the molecular mechanisms leading to atrophied epithelium and fibrosis are poorly understood, we studied areca nut actions on human keratinocyte and gingival fibroblast cells. Areca nut water extract (ANW) was cytotoxic to epithelial cells and had a pro-proliferative effect on fibroblasts. This opposite effect of ANW on epithelial and fibroblast cells was intriguing but reflects the OSF histopathology such as epithelial atrophy and proliferation of fibroblasts. We demonstrate that the pro-proliferative effects of ANW on fibroblasts are dependent on insulin-like growth factor signalling while the cytotoxic effects on keratinocytes are dependent on the generation of reactive oxygen species. Treatment of keratinocytes with arecoline which is a component of ANW along with copper resulted in enhanced cytotoxicity which becomes comparable to IC50 of ANW. Furthermore, studies using cyclic voltammetry, mass spectrometry and plasmid cleavage assay suggested that the presence of arecoline increases oxidation reduction potential of copper leading to enhanced cleavage of DNA which could generate an apoptotic response. Terminal deoxynucleotidyl transferase dUTP Nick End Labeling assay and Ki-67 index of OSF tissue sections suggested epithelial apoptosis, which could be responsible for the atrophy of OSF epithelium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thrombocytopenia is one of the most frequently observed secondary complications in many pathological conditions including liver diseases, where hyperbilirubinemia is very common. The present study sought to find the cause of thrombocytopenia in unconjugated hyperbilirubinemic conditions. Unconjugated bilirubin (UCB), an end-product of heme catabolism, is known to have pro-oxidative and cytotoxic effects at high serum concentration. We investigated the molecular mechanism underlying the pro-apoptotic effect of UCB on human platelets in vitro, and followed it up with studies in phenylhydrazine-induced hyperbilirubinemic rat model and hyperbilirubinemic human subjects. UCB is indeed found to significantly induce platelet apoptotic events including elevated endogenous reactive oxygen species generation, mitochondrial membrane depolarization, increased intracellular calcium levels, cardiolipin peroxidation and phosphatidylserine externalization (p < 0.001) as evident by FACS analysis. The immunoblots show the elevated levels of cytosolic cytochrome c and caspase activation in UCB-treated platelets. Further, UCB is found to induce mitochondrial ROS generation leading to p38 activation, followed by downstream activation of p53, ultimately resulting in altered expression of Bcl-2 and Bax proteins as evident from immunoblotting. All these parameters conclude that elevated unconjugated bilirubin causes thrombocytopenia by stimulating platelet apoptosis via mitochondrial ROS-induced p38 and p53 activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although DNA interstrand crosslinking (ICL) agents such as mitomycin C, cisplatin and psoralen serve as potent anticancer drugs, these agents are known to have dose-limiting toxic effects on normal cells. Moreover, tumor resistance to these agents has been reported. Here, we show that trans-dichlorooxovanadium (IV) complex of pyrenyl terpyridine (VDC) is a novel photoinducible DNA crosslinking agent. By a combination of in vitro and ex vivo experiments including plasmid-based assays, we find that VDC forms monoadducts on the DNA and can be activated by UV-A and visible light to generate DNA interstrand crosslinks. VDC efficiently activates Fanconi anemia (FA) pathway of DNA interstrand crosslink repair. Strikingly, photoinduction of VDC induces prolonged activation of cell cycle checkpoint and a high degree of cell death in homologous recombination (HR)/ICL repair defective cells. Moreover, VDC specifically targets cells that express pathological RAD51C mutants. These data imply that VDC can be potentially used for cancer therapy and suggest that tumors arising in patients with gene mutations in FA and HR repair pathway can be specifically targeted by a photoactivatable VDC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arginine is an integral part of host defense when invading pathogens are encountered. The arginine metabolite nitric oxide (NO) confers antimicrobial properties, whereas the metabolite ornithine is utilized for polyamine synthesis. Polyamines are crucial to tissue repair and anti-inflammatory responses. iNOS/arginase balance can determine Th1/Th2 response. Furthermore, the host arginine pool and its metabolites are utilized as energy sources by various pathogens. Apart from its role as an immune modulator, recent studies have also highlighted the therapeutic effects of arginine. This article sheds light upon the roles of arginine metabolism during pathological conditions and its therapeutic potential.