81 resultados para Paley-Wiener-Schawrtz Theorems


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we obtain existence theorems for generalized Hammerstein-type equations K(u)Nu + u = 0, where for each u in the dual X* of a real reflexive Banach space X, K(u): X -- X* is a bounded linear map and N: X* - X is any map (possibly nonlinear). The method we adopt is totally different from the methods adopted so far in solving these equations. Our results in the reflexive spacegeneralize corresponding results of Petry and Schillings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flow is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy's proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two mixed boundary value problems associated with two-dimensional Laplace equation, arising in the study of scattering of surface waves in deep water (or interface waves in two superposed fluids) in the linearised set up, by discontinuities in the surface (or interface) boundary conditions, are handled for solution by the aid of the Weiner-Hopf technique applied to a slightly more general differential equation to be solved under general boundary conditions and passing on to the limit in a manner so as to finally give rise to the solutions of the original problems. The first problem involves one discontinuity while the second problem involves two discontinuities. The reflection coefficient is obtained in closed form for the first problem and approximately for the second. The behaviour of the reflection coefficient for both the problems involving deep water against the incident wave number is depicted in a number of figures. It is observed that while the reflection coefficient for the first problem steadily increases with the wave number, that for the second problem exhibits oscillatory behaviour and vanishes at some discrete values of the wave number. Thus, there exist incident wave numbers for which total transmission takes place for the second problem. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We formulate a two-stage Iterative Wiener filtering (IWF) approach to speech enhancement, bettering the performance of constrained IWF, reported in literature. The codebook constrained IWF (CCIWF) has been shown to be effective in achieving convergence of IWF in the presence of both stationary and non-stationary noise. To this, we include a second stage of unconstrained IWF and show that the speech enhancement performance can be improved in terms of average segmental SNR (SSNR), Itakura-Saito (IS) distance and Linear Prediction Coefficients (LPC) parameter coincidence. We also explore the tradeoff between the number of CCIWF iterations and the second stage IWF iterations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study an LMS-DFE. We use the ODE framework to show that the LMS-DFE attractors are close to the true DFE Wiener filter (designed considering the decision errors) at high SNR. Therefore, via LMS one can obtain a computationally efficient way to obtain the true DFE Wiener filter under high SNR. We also provide examples to show that the DFE filter so obtained can significantly outperform the usual DFE Wiener filter (designed assuming perfect decisions) at all practical SNRs. In fact, the performance improvement is very significant even at high SNRs (up to 50%), where the popular Wiener filter designed with perfect decisions, is believed to be closer to the optimal one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of Wiener–Lee transforms to construct one of the frequency characteristics, magnitude or phase of a network function, when the other characteristic is given graphically, is indicated. This application is useful in finding a realisable network function whose magnitude or phase curve is given. A discrete version of the transform is presented, so that a digital computer can be employed for the computation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the Wiener Tauberian property holds for the Heisenberg Motion group TnB

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dilaton action in 3 + 1 dimensions plays a crucial role in the proof of the a-theorem. This action arises using Wess-Zumino consistency conditions and crucially relies on the existence of the trace anomaly. Since there are no anomalies in odd dimensions, it is interesting to ask how such an action could arise otherwise. Motivated by this we use the AdS/CFT correspondence to examine both even and odd dimensional conformal field theories. We find that in even dimensions, by promoting the cutoff to a field, one can get an action for this field which coincides with the Wess-Zumino action in flat space. In three dimensions, we observe that by finding an exact Hamilton-Jacobi counterterm, one can find a non-polynomial action which is invariant under global Weyl rescalings. We comment on how this finding is tied up with the F-theorem conjectures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of speech enhancement algorithms is to provide an estimate of clean speech starting from noisy observations. The often-employed cost function is the mean square error (MSE). However, the MSE can never be computed in practice. Therefore, it becomes necessary to find practical alternatives to the MSE. In image denoising problems, the cost function (also referred to as risk) is often replaced by an unbiased estimator. Motivated by this approach, we reformulate the problem of speech enhancement from the perspective of risk minimization. Some recent contributions in risk estimation have employed Stein's unbiased risk estimator (SURE) together with a parametric denoising function, which is a linear expansion of threshold/bases (LET). We show that the first-order case of SURE-LET results in a Wiener-filter type solution if the denoising function is made frequency-dependent. We also provide enhancement results obtained with both techniques and characterize the improvement by means of local as well as global SNR calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this article is to study Lipschitz CR mappings from an h-extendible (or semi-regular) hypersurface in . Under various assumptions on the target hypersurface, it is shown that such mappings must be smooth. A rigidity result for proper holomorphic mappings from strongly pseudoconvex domains is also proved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given a smooth, projective variety Y over an algebraically closed field of characteristic zero, and a smooth, ample hyperplane section X subset of Y, we study the question of when a bundle E on X, extends to a bundle epsilon on a Zariski open set U subset of Y containing X. The main ingredients used are explicit descriptions of various obstruction classes in the deformation theory of bundles, together with Grothendieck-Lefschetz theory. As a consequence, we prove a Noether-Lefschetz theorem for higher rank bundles, which recovers and unifies the Noether-Lefschetz theorems of Joshi and Ravindra-Srinivas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present an improved load distribution strategy, for arbitrarily divisible processing loads, to minimize the processing time in a distributed linear network of communicating processors by an efficient utilization of their front-ends. Closed-form solutions are derived, with the processing load originating at the boundary and at the interior of the network, under some important conditions on the arrangement of processors and links in the network. Asymptotic analysis is carried out to explore the ultimate performance limits of such networks. Two important theorems are stated regarding the optimal load sequence and the optimal load origination point. Comparative study of this new strategy with an earlier strategy is also presented.