121 resultados para PROBABILISTIC TELEPORTATION
Resumo:
In this work, an attempt has been made to evaluate the spatial variation of peak horizontal acceleration (PHA) and spectral acceleration (SA) values at rock level for south India based on the probabilistic seismic hazard analysis (PSHA). These values were estimated by considering the uncertainties involved in magnitude, hypocentral distance and attenuation of seismic waves. Different models were used for the hazard evaluation, and they were combined together using a logic tree approach. For evaluating the seismic hazard, the study area was divided into small grids of size 0.1A degrees A xA 0.1A degrees, and the hazard parameters were calculated at the centre of each of these grid cells by considering all the seismic sources within a radius of 300 km. Rock level PHA values and SA at 1 s corresponding to 10% probability of exceedance in 50 years were evaluated for all the grid points. Maps showing the spatial variation of rock level PHA values and SA at 1 s for the entire south India are presented in this paper. To compare the seismic hazard for some of the important cities, the seismic hazard curves and the uniform hazard response spectrum (UHRS) at rock level with 10% probability of exceedance in 50 years are also presented in this work.
Resumo:
Retaining walls are one of the important structures in nearshore environment and are generally designed based on deterministic approaches. The present paper focuses on the reliability assessment of cantilever retaining walls with due consideration to the uncertainties in soil parameters. Reliability analysis quantifies the level of reliability associated with designs and the associated risk. It also gives the formalisation of a design situation that is normally recognised by experienced designers and provides a greater level of consistency in design. The results are also examined in terms of a simple cost function. The study shows that sliding mode is the critical failure mode and the consequent failure costs are also higher. The study also shows that provision of shear key results in improved reliability and reduction in expected costs.
Resumo:
An updated catalog of earthquakes has been prepared for the Andaman-Nicobar and adjoining regions. The catalog was homogenized to a unified magnitude scale, and declustering of the catalog was performed to remove aftershocks and foreshocks. Eleven regional source zones were identified in the study area to account for local variability in seismicity characteristics. The seismicity parameters were estimated for each of these source zones, and the seismic hazard evaluation of the Andaman-Nicobar region has been performed using different source models and attenuation relations. Probabilistic seismic hazard analysis has been performed with currently available data and their best possible scientific interpretation using an appropriate instrument such as the logic tree to explicitly account for epistemic uncertainty by considering alternative models (source models, maximum magnitude, and attenuation relationships). The hazard maps for different periods have been produced for horizontal ground motion on the bedrock level.
Resumo:
Effective sharing of the last level cache has a significant influence on the overall performance of a multicore system. We observe that existing solutions control cache occupancy at a coarser granularity, do not scale well to large core counts and in some cases lack the flexibility to support a variety of performance goals. In this paper, we propose Probabilistic Shared Cache Management (PriSM), a framework to manage the cache occupancy of different cores at cache block granularity by controlling their eviction probabilities. The proposed framework requires only simple hardware changes to implement, can scale to larger core count and is flexible enough to support a variety of performance goals. We demonstrate the flexibility of PriSM, by computing the eviction probabilities needed to achieve goals like hit-maximization, fairness and QOS. PriSM-HitMax improves performance by 18.7% over LRU and 11.8% over previously proposed schemes in a sixteen core machine. PriSM-Fairness improves fairness over existing solutions by 23.3% along with a performance improvement of 19.0%. PriSM-QOS successfully achieves the desired QOS targets.
Assessment of seismic hazard and liquefaction potential of Gujarat based on probabilistic approaches
Resumo:
Gujarat is one of the fastest-growing states of India with high industrial activities coming up in major cities of the state. It is indispensable to analyse seismic hazard as the region is considered to be most seismically active in stable continental region of India. The Bhuj earthquake of 2001 has caused extensive damage in terms of causality and economic loss. In the present study, the seismic hazard of Gujarat evaluated using a probabilistic approach with the use of logic tree framework that minimizes the uncertainties in hazard assessment. The peak horizontal acceleration (PHA) and spectral acceleration (Sa) values were evaluated for 10 and 2 % probability of exceedance in 50 years. Two important geotechnical effects of earthquakes, site amplification and liquefaction, are also evaluated, considering site characterization based on site classes. The liquefaction return period for the entire state of Gujarat is evaluated using a performance-based approach. The maps of PHA and PGA values prepared in this study are very useful for seismic hazard mitigation of the region in future.
Resumo:
The delineation of seismic source zones plays an important role in the evaluation of seismic hazard. In most of the studies the seismic source delineation is done based on geological features. In the present study, an attempt has been made to delineate seismic source zones in the study area (south India) based on the seismicity parameters. Seismicity parameters and the maximum probable earthquake for these source zones were evaluated and were used in the hazard evaluation. The probabilistic evaluation of seismic hazard for south India was carried out using a logic tree approach. Two different types of seismic sources, linear and areal, were considered in the present study to model the seismic sources in the region more precisely. In order to properly account for the attenuation characteristics of the region, three different attenuation relations were used with different weightage factors. Seismic hazard evaluation was done for the probability of exceedance (PE) of 10% and 2% in 50 years. The spatial variation of rock level peak horizontal acceleration (PHA) and spectral acceleration (Sa) values corresponding to return periods of 475 and 2500 years for the entire study area are presented in this work. The peak ground acceleration (PGA) values at ground surface level were estimated based on different NEHRP site classes by considering local site effects.
Resumo:
Latent variable methods, such as PLCA (Probabilistic Latent Component Analysis) have been successfully used for analysis of non-negative signal representations. In this paper, we formulate PLCS (Probabilistic Latent Component Segmentation), which models each time frame of a spectrogram as a spectral distribution. Given the signal spectrogram, the segmentation boundaries are estimated using a maximum-likelihood approach. For an efficient solution, the algorithm imposes a hard constraint that each segment is modelled by a single latent component. The hard constraint facilitates the solution of ML boundary estimation using dynamic programming. The PLCS framework does not impose a parametric assumption unlike earlier ML segmentation techniques. PLCS can be naturally extended to model coarticulation between successive phones. Experiments on the TIMIT corpus show that the proposed technique is promising compared to most state of the art speech segmentation algorithms.
Resumo:
Estimating program worst case execution time(WCET) accurately and efficiently is a challenging task. Several programs exhibit phase behavior wherein cycles per instruction (CPI) varies in phases during execution. Recent work has suggested the use of phases in such programs to estimate WCET with minimal instrumentation. However the suggested model uses a function of mean CPI that has no probabilistic guarantees. We propose to use Chebyshev's inequality that can be applied to any arbitrary distribution of CPI samples, to probabilistically bound CPI of a phase. Applying Chebyshev's inequality to phases that exhibit high CPI variation leads to pessimistic upper bounds. We propose a mechanism that refines such phases into sub-phases based on program counter(PC) signatures collected using profiling and also allows the user to control variance of CPI within a sub-phase. We describe a WCET analyzer built on these lines and evaluate it with standard WCET and embedded benchmark suites on two different architectures for three chosen probabilities, p={0.9, 0.95 and 0.99}. For p= 0.99, refinement based on PC signatures alone, reduces average pessimism of WCET estimate by 36%(77%) on Arch1 (Arch2). Compared to Chronos, an open source static WCET analyzer, the average improvement in estimates obtained by refinement is 5%(125%) on Arch1 (Arch2). On limiting variance of CPI within a sub-phase to {50%, 10%, 5% and 1%} of its original value, average accuracy of WCET estimate improves further to {9%, 11%, 12% and 13%} respectively, on Arch1. On Arch2, average accuracy of WCET improves to 159% when CPI variance is limited to 50% of its original value and improvement is marginal beyond that point.
Resumo:
This paper proposes a novel approach to solve the ordinal regression problem using Gaussian processes. The proposed approach, probabilistic least squares ordinal regression (PLSOR), obtains the probability distribution over ordinal labels using a particular likelihood function. It performs model selection (hyperparameter optimization) using the leave-one-out cross-validation (LOO-CV) technique. PLSOR has conceptual simplicity and ease of implementation of least squares approach. Unlike the existing Gaussian process ordinal regression (GPOR) approaches, PLSOR does not use any approximation techniques for inference. We compare the proposed approach with the state-of-the-art GPOR approaches on some synthetic and benchmark data sets. Experimental results show the competitiveness of the proposed approach.
Resumo:
This study presents the response of a vertically loaded pile in undrained clay considering spatially distributed undrained shear strength. The probabilistic study is performed considering undrained shear strength as random variable and the analysis is conducted using random field theory. The inherent soil variability is considered as source of variability and the field is modeled as two dimensional non-Gaussian homogeneous random field. Random field is simulated using Cholesky decomposition technique within the finite difference program and Monte Carlo simulation approach is considered for the probabilistic analysis. The influence of variance and spatial correlation of undrained shear strength on the ultimate capacity as summation of ultimate skin friction and end bearing resistance of pile are examined. It is observed that the coefficient of variation and spatial correlation distance are the most important parameters that affect the pile ultimate capacity.
Resumo:
The work presented in this paper involves the stochastic finite element analysis of composite-epoxy adhesive lap joints using Monte Carlo simulation. A set of composite adhesive lap joints were prepared and loaded till failure to obtain their strength. The peel and shear strain in the bond line region at different levels of load were obtained using digital image correlation (DIC). The corresponding stresses were computed assuming a plane strain condition. The finite element model was verified by comparing the numerical and experimental stresses. The stresses exhibited a similar behavior and a good correlation was obtained. Further, the finite element model was used to perform the stochastic analysis using Monte Carlo simulation. The parameters influencing stress distribution were provided as a random input variable and the resulting probabilistic variation of maximum peel and shear stresses were studied. It was found that the adhesive modulus and bond line thickness had significant influence on the maximum stress variation. While the adherend thickness had a major influence, the effect of variation in longitudinal and shear modulus on the stresses was found to be little. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a probabilistic prediction based approach for providing Quality of Service (QoS) to delay sensitive traffic for Internet of Things (IoT). A joint packet scheduling and dynamic bandwidth allocation scheme is proposed to provide service differentiation and preferential treatment to delay sensitive traffic. The scheduler focuses on reducing the waiting time of high priority delay sensitive services in the queue and simultaneously keeping the waiting time of other services within tolerable limits. The scheme uses the difference in probability of average queue length of high priority packets at previous cycle and current cycle to determine the probability of average weight required in the current cycle. This offers optimized bandwidth allocation to all the services by avoiding distribution of excess resources for high priority services and yet guaranteeing the services for it. The performance of the algorithm is investigated using MPEG-4 traffic traces under different system loading. The results show the improved performance with respect to waiting time for scheduling high priority packets and simultaneously keeping tolerable limits for waiting time and packet loss for other services. Crown Copyright (C) 2015 Published by Elsevier B.V.
Resumo:
Northeast India and its adjoining areas are characterized by very high seismic activity. According to the Indian seismic code, the region falls under seismic zone V, which represents the highest seismic-hazard level in the country. This region has experienced a number of great earthquakes, such as the Assam (1950) and Shillong (1897) earthquakes, that caused huge devastation in the entire northeast and adjacent areas by flooding, landslides, liquefaction, and damage to roads and buildings. In this study, an attempt has been made to find the probability of occurrence of a major earthquake (M-w > 6) in this region using an updated earthquake catalog collected from different sources. Thereafter, dividing the catalog into six different seismic regions based on different tectonic features and seismogenic factors, the probability of occurrences was estimated using three models: the lognormal, Weibull, and gamma distributions. We calculated the logarithmic probability of the likelihood function (ln L) for all six regions and the entire northeast for all three stochastic models. A higher value of ln L suggests a better model, and a lower value shows a worse model. The results show different model suits for different seismic zones, but the majority follows lognormal, which is better for forecasting magnitude size. According to the results, Weibull shows the highest conditional probabilities among the three models for small as well as large elapsed time T and time intervals t, whereas the lognormal model shows the lowest and the gamma model shows intermediate probabilities. Only for elapsed time T = 0, the lognormal model shows the highest conditional probabilities among the three models at a smaller time interval (t = 3-15 yrs). The opposite result is observed at larger time intervals (t = 15-25 yrs), which show the highest probabilities for the Weibull model. However, based on this study, the IndoBurma Range and Eastern Himalaya show a high probability of occurrence in the 5 yr period 2012-2017 with >90% probability.
Resumo:
Background: A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results: The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In each S. cerevisiae LP-SLGN, the number of nodes with a particular degree follows an approximate power law suggesting that its degree distributions is similar to that observed in real-world networks. Inspection of these LP-SLGNs suggests biological hypotheses amenable to experimental verification. Conclusion: A statistically robust and computationally efficient LP-based method for estimating the topology of a large sparse undirected graph from high-dimensional data yields representations of genetic networks that are biologically plausible and useful abstractions of the structures of real genetic networks. Analysis of the statistical and topological properties of learned LP-SLGNs may have practical value; for example, genes with high random walk betweenness, a measure of the centrality of a node in a graph, are good candidates for intervention studies and hence integrated computational – experimental investigations designed to infer more realistic and sophisticated probabilistic directed graphical model representations of genetic networks. The LP-based solutions of the sparse linear regression problem described here may provide a method for learning the structure of transcription factor networks from transcript profiling and transcription factor binding motif data.