174 resultados para PM-AH
Resumo:
2 V/40 Ah valve-regulated lead-acid (VRLA) cells have been constructed with negative plates employing carbon black as well as an admixture of carbon black fumed silica as additives in negative active material for partial-state-of-charge (PSoC) applications. Electrical performance of such cells is compared with conventional 2 V/40 Ah VRLA cells for PSoC operation. Active material utilization has been found to be higher for carbon-black fumed-silica mixed negative plates while formation is faster for cells with carbon-black mixed negative plates. Both faradaic efficiency and percentage capacity delivered have been found to be higher for cells with carbon-black + fumed-silica mixed negative plates. However, a high self-discharge rate is observed for cells with carbon-black + fumed-silica mixed negative plates.
Resumo:
Consanguineous marriages are strongly favoured among the populations of South India. In a study conducted on 407 infants and children, a total of 35 genetic diseases was diagnosed in 63 persons: 44 with single gene defects, 12 with polygenic disorders, and seven with Down's syndrome. The coefficient of inbreeding of the total study group, F = 0.0414, was significantly higher than that previously calculated for the general population, F = 0.0271, and autosomal recessive disorders formed the largest single disease category diagnosed. The results suggest that long term inbreeding may not have resulted in appreciable elimination of recessive lethals and sub-lethals from the gene pool.
Resumo:
The variation in the tensile properties at 77 K and 300 K in warm-rolled (300 K) Cd-1% Ag alloy with deformation has been studied in longitudinal as well as transverse specimens. The low-temperature yield strength increases with warm rolling without much loss in ductility. The strength at 300 K, however, decreases with heavy warm deformation. From microstructural studies and X-ray investigations, it was observed that changes in grain size and texture occur during warm rolling. Both these changes are found to be important in deciding the tensile properties. The longitudinal and transverse strengths at 77 K vary linearly with l-frac12, where l is the average grain diameter, and thus they obey the Hall-Petch relation. The Hall-Petch slope, k, is lower in specimens with favourable lcub1013rcub texture while the intercept σo is higher when the lcub0002rcub texture is less favourable.
Resumo:
Using elementary comparison geometry, we prove: Let (M, g) be a simply-connected complete Riemannian manifold of dimension >= 3. Suppose that the sectional curvature K satisfies -1-s(r) <= K <= -1, where r denotes distance to a fixed point in M. If lim(r ->infinity) e(2r) s(r) = 0, then (M, g) has to be isometric to H-n.The same proof also yields that if K satisfies -s(r) <= K <= 0 where lim(r ->infinity) r(2) s(r) = 0, then (M, g) is isometric to R-n, a result due to Greene and Wu.Our second result is a local one: Let (M, g) be any Riemannian manifold. For a E R, if K < a on a geodesic ball Bp (R) in M and K = a on partial derivative B-p (R), then K = a on B-p (R).
Resumo:
Tensile experiments on a fine-grained single-phase Mg–Zn–Al alloy (AZ31) at 673 K revealed superplastic behavior with an elongation to failure of 475% at 1 × 10−4 s−1 and non-superplastic behavior with an elongation to failure of 160% at 1 × 10−2 s−1; the corresponding strain rate sensitivities under these conditions were 0.5 and 0.2, respectively. Measurements indicated that the grain boundary sliding (GBS) contribution to strain ξ was 30% under non-superplastic conditions; there was also a significant sharpening in texture during such deformation. Under superplastic conditions, ξ was 50% at both low and high elongations of 20% and 120%; the initial texture became more random under such conditions. In non-superplastic conditions, deformation occurred under steady-state conditions without grain growth before significant flow localization whereas, under superplastic conditions, there was grain growth during the early stages of deformation, leading to strain hardening. The grains retained equiaxed shapes under all experimental conditions. Superplastic deformation is attributed to GBS, while non-superplastic deformation is attributed to intragranular dislocation creep with some contribution from GBS. The retention of equiaxed grain shapes during dislocation creep is consistent with a model based on local recovery related to the disturbance of triple junctions.
Resumo:
The inbreeding patterns and coefficient of inbreeding (F) of 3,350 new-borns in Bangalore, Karnataka were determined. A total of 29.24% were born of consanguineous marriages, F = 0.02313. Inbreeding was most common among the Hindus: 23.56% of their marriages were uncle-niece, F for the group was 0.02670.
Resumo:
The variation in the tensile properties at 77 K and 300 K in warm-rolled (300 K) Cd-1% Ag alloy with deformation has been studied in longitudinal as well as transverse specimens. The low-temperature yield strength increases with warm rolling without much loss in ductility. The strength at 300 K, however, decreases with heavy warm deformation. From microstructural studies and X-ray investigations, it was observed that changes in grain size and texture occur during warm rolling. Both these changes are found to be important in deciding the tensile properties. The longitudinal and transverse strengths at 77 K vary linearly with l-frac12, where l is the average grain diameter, and thus they obey the Hall-Petch relation. The Hall-Petch slope, k, is lower in specimens with favourable lcub1013rcub texture while the intercept σo is higher when the lcub0002rcub texture is less favourable.
Resumo:
Both metal-insulator Peierls and antiferromagnetic spin-Peierls dimerized phase transitions are observed to have a BCS electron-phonon interaction parameter which is compatible with the jellium value λ = 2/3π ≈ 0.21.
Resumo:
AA7475 alloy was deformed up to 25% elongation in INSTRON at 788K. The grain boundary sliding due to this superplastic deformation was measured by Scanning Electron Microscope. The microstructure and texture development due to this deformation at elevated temperature was analyzed from the Orientation Image Microstructures i.e. the Electron Back Scattered Diffraction Image. The Orientation Image Microstructures revealed that superplastic deformation was associated with recovery and recrystallization in-situ process.
Resumo:
Serine hydroxymethyltransferase, the first enzyme in the pathway for interconversion of C1 fragments, was purified to homogeneity for the first time from any plant source. The enzyme from 72-h mung bean (Vigna radiata L.) seedlings was isolated using Blue Sepharose CL-6B and folate-AH-Sepharose-4B affinity matrices and had the highest specific activity (1.33 micromoles of HCHO formed per minute per milligram protein) reported hitherto. The enzyme preparation was extremely stable in the presence of folate or L-serine. Pyridoxal 5'-phosphate, ethylenediaminetetraacetate and 2-mercaptoethanol prevented the inactivation of the enzyme during purification. The enzyme functioned optimally at pH 8.5 and had two temperature maxima at 35 and 55°C. The Km values for serine were 1.25 and 68 millimolar, corresponding to Vmax values of 1.8 and 5.4 micromoles of HCHO formed per minute per milligram protein, respectively. The K0.5 value for L-tetrahydrofolate (H4folate) was 0.98 millimolar. Glycine, the product of the reaction and D-cycloserine, a structural analog of D-alanine, were linear competitive inhibitors with respect to L-serine with Ki values of 2.30 and 2.02 millimolar, respectively. Dichloromethotrexate, a substrate analog of H4folate was a competitive inhibitor when H4folate was the varied substrate. Results presented in this paper suggested that pyridoxal 5'-phosphate may not be essential for catalysis.The sigmoid saturation pattern of H4folate (nH = 2.0), one of the substrates, the abolition of sigmoidicity by NADH, an allosteric positive effector (nH = 1.0) and the increase in sigmoidicity by NAD+ and adenine nucleotides, negative allosteric effectors (nH = 2.4) clearly established that this key enzyme in the folate metabolism was an allosteric protein. Further support for this conclusion were the observations that (a) serine saturation exhibited an intermediary plateau region; (b) partial inhibition by methotrexate, aminopterin, O-phosphoserine, DL-{alpha}-methylserine and DL-O-methylserine; (c) subunit nature of the enzyme; and (d) decrease in the nH value from 2.0 for H4folate to 1.5 in presence of L-serine. These results highlight the regulatory nature of mung bean serine hydroxymethyltransferase and its possible involvement in the modulation of the interconversion of folate coenzymes.
Resumo:
Octachlorocyclotetraphosphazene, N4P4CIa, reacts with dibenzylamine to give the chloro(dibenzy1amino) derivatives, N4P,C18,[N(CH2Ph)2],,, n = 1, 2 (two isomers), and 4 (three isomers). Nongeminal structures have been assigned to these compounds on the basis of ‘H and jlP NMR spectra. The presence of at least two tris(dibenzylamin0) derivatives in some reaction mixtures is also inferred from NMR spectra. Steric effects become important at the tetrakis stage of chlorine replacement, and further substitution by dibenzylamine to give monocyclic tetrameric derivatives does not occur. A “bicyclic” phosphazene, N4P4[N(CH2Ph)2]6(NCHzPh)is, obtained from the reaction of N4P4Claw ith an excess of dibenzylamine in boiling methyl cyanide. The formation of this derivative and its spectroscopic data are discussed.
Resumo:
The crude extracts of 3-day-old etiolated seedlings of Lathyrus sativus contained two S-adenosyl-L-methionine decarboxylase activities. The artifactual putrescine-dependent activity was due to the H2O2 generated by diamine oxidase (EC 1.4.3.6) of this plant system and was inhibited by catalase. This observation was confirmed by using an electrophoretically and immunologically homogeneous preparation of L. sativus diamine oxidase. In the presence of putrescine, diamine oxidase, in addition to S-adenosylmethionine, decarboxylated L-lysine, L-arginine, L-ornithine, L-methionine and L-glutamic acid to varying degrees. The decarboxylation was not metal-ion dependent. The biosynthetic S-adenosylmethionine decarboxylase (EC 4.1.1.21) was detected after removing diamine oxidase specifically from the crude extracts by employing an immunoaffinity column. This Mg2+ -dependent decarboxylase was not stimulated by putrescine or inhibited by catalase. The enzyme activity was inhibited by semicarbazide, 4-bromo-3-hydroxybenzoylamine dihydrogen phosphate and methylglyoxal-bis (guanylhydrazone). It was largely localized in the shoots of the etiolated seedlings and was purified 40-fold by employing a p-hydroxymercuribenzoate/AH-Sepharose affinity column, which also separated the decarboxylase activity from spermidine synthase.
Resumo:
The blue emission of polyfluorene (PF)-based light-emitting diodes (LEDs) is known to degrade due to a low-energy green emission, which hitherto has been attributed to oxidative defects. By studying the electroluminescence (EL) from ethyl-hexyl substituted PF LEDs in the presence of oxygen and in an inert atmosphere, and by using trace quantities of paramagnetic impurities (PM) in the polymer, we show that the triplet states play a major role in the low-energy emission mechanism. Our time-dependent many-body studies show a large cross-section for the triplet formation in the EL process in the presence of PM, primarily due to electron-hole recombination processes.
Resumo:
Plant regeneration from mesophyll protoplasts of pepper, Capsicum annuum L. cv. California Wonder has been demonstrated via shoot organogenesis, Protoplasts isolated from fully expanded leaves of 3-week-old axenic shoots when cultured in TM medium supplemented with 1 mgl(-1) NAA, 1 mgl(-1) 2, 4-D, 0.5 mgl(-1) BAP (CM 1) resulted in divisions with a frequency ranging from 20-25%. Antioxidant ascorbic acid and polyvinylpyrrolidone (PVP) in the medium and incubation in the dark helped overcome browning of protoplasts. Microcalli and macrocalli were formed in TM medium containing 2 mgl(-1) NAA and 0.5 mgl(-1) BAP (CM II) and MS gelled medium containing 2 mgl(-1) NAA and 0.5 mgl(-1) BAP (CM III), respectively, Regeneration of plantlets was possible via caulogenesis, Microshoots, 2-5 per callus appeared on MS gelled medium enriched with 0.5 mgl(-1) IAA, 2 mgl(-1) GA and 10 mgl(-1) BAP (CM IVc). Rooting of microshoots was obtained on half strength gelled medium containing 1 mgl(-1) NAA and 0.5 mgl(-1) BAP, Protoplasts isolated from cotyledons failed to divide and degenerated eventually.
Resumo:
A simple protoplast isolation protocol that was designed to recover totipotent plant protoplasts with relative ease has been described. The key elements of the protocol are, tissue digestion at slightly elevated temperatures and use of protoplast-releasing enzymes that are stable and efficient at higher temperatures. Besides enzymes, the protoplast isolation cocktail consisted of an osmoticum (mannitol or MgSO4), and a protectant (CaCl2 2H2O), all dissolved in distilled water. The protocol has ensured reproducibility, higher yields and is gentle on protoplasts as the protoplasts obtained were amenable to cell wall regeneration and cell division. Plant regeneration was demonstrated forNicotiana tabacum cv. Thompson from protoplasts isolated by this method. Wall regeneration and cell division were obtained in other species. The merits of the protocol are, simple and easy-to-handle procedure, non-requirement of preconditioning of donor plant and explants, incubation without agitation, satisfactory yields, culturability of the protoplasts isolated and applicability of the protocol to a large number of species including mucilage-containing plants.