23 resultados para PLACE PREFERENCE
Resumo:
The synthesis and optical properties of four new triarylborane-dipyrromethane (TAB-DPM) conjugates (3a-d) containing dual binding sites (hydrogen bond donor and Lewis acid) have been reported. The new compounds exhibit a selective fluorogenic response towards the F-ion. The NMR titrations show that the anions bind to the TAB-DPM conjugates via the Lewis acidic triarylborane centre in preference to the hydrogen bond donor (dipyrromethane) units.
Resumo:
The crystal and molecular structures of the potential antidepressant drug fenobam and its derivatives are examined in terms of the preferred form among the two possible tautomeric structures. In this study, chemical derivatization has been utilized as a means to ``experimentally simulate'' the tautomeric preference and conformational variability in fenobam. Eight new derivatives of fenobam have been synthesized, and structural features have been characterized by single-crystal X-ray diffraction and NMR spectroscopy. The specific tautomeric preference found in all of these compounds and their known crystal forms have been construed in terms of the stabilizing intramolecular N-H center dot center dot center dot O and N-H center dot center dot center dot S hydrogen bonding. The hierarchy of intramolecular hydrogen bonds evidenced as the preference of the C-H center dot center dot center dot O hydrogen bond over C-H center dot center dot center dot N and that of the C-H center dot center dot center dot N hydrogen bond over C-H center dot center dot center dot S explains the two distinct conformations adopted by fenobam and thiofenobam derivatives. The relative energy values of different molecular conformations have been calculated and compared.
Resumo:
There are two major theories that attempt to explain hand preference in non-human primates-the `task complexity' theory and the `postural origins' theory. In the present study, we proposed a third hypothesis to explain the evolutionary origin of hand preference in non-human primates, stating that it could have evolved owing to structural and functional adaptations to feeding, which we refer to as the `niche structure' hypothesis. We attempted to explore this hypothesis by comparing hand preference across species that differ in the feeding ecology and niche structure: red howler monkeys, Alouatta seniculus and yellow-breasted capuchin monkeys, Sapajus xanthosternos. The red howler monkeys used the mouth to obtain food more frequently than the yellow-breasted capuchin monkeys. The red howler monkeys almost never reached for food presented on the opposite side of a wire mesh or inside a portable container, whereas the yellow-breasted capuchin monkeys reached for food presented in all four spatial arrangements (scattered, on the opposite side of a wire mesh, inside a suspended container, and inside a portable container). In contrast to the red howler monkeys that almost never acquired bipedal and clinging posture, the yellow-breasted capuchin monkeys acquired all five body postures (sitting, bipedal, tripedal, clinging, and hanging). Although there was no difference between the proportion of the red howler monkeys and the yellow-breasted capuchin monkeys that preferentially used one hand, the yellow-breasted capuchin monkeys exhibited an overall weaker hand preference than the red howler monkeys. Differences in hand preference diminished with the increasing complexity of the reaching-for-food tasks, i.e., the relatively more complex tasks were perceived as equally complex by both the red howler monkeys and the yellow-breasted capuchin monkeys. These findings suggest that species-specific differences in feeding ecology and niche structure can influence the perception of the complexity of the task and, consequently, hand preference.
Resumo:
Since the discovery 1] of gamma' precipitate (L1(2) - Co-3 (Al, W)) in the Co-Al-W ternary system, there has been an increased interest in Co-based superalloys. Since these alloys have two phase microstructures (gamma + gamma') similar to Ni-based superalloys 2], they are viable candidates in high temperature applications, particularly in land-based turbines. The role of alloying on stability of the gamma' phase has been an active area of research. In this study, electronic structure calculations were done to probe the effect of alloying in Co3W with L1(2) structure. Compositions of type Co-3(W, X), (where X/Y = Mn, Fe, Ni, Pt, Cr, Al, Si, V, W, Ta, Ti, Nb, Hf, Zr and Mo) were studied. Effect of alloying on equilibrium lattice parameters and ground state energies was used to calculate Vegard's coefficients and site preference related data. The effect of alloying on the stability of the L1(2) structure vis a vis other geometrically close packed ordered structures was also studied for a range of Co3X compounds. Results suggest that the penchant of element for the W sublattice can be predicted by comparing heats of formation of Co3X in different structures.
Resumo:
The de novo purine biosynthesis is one of the highly conserved pathways among all organisms and is essential for the cell viability. A clear understanding of the enzymes in this pathway would pave way for the development of antimicrobial and anticancer drugs. Phosphoribosylaminoimidazole-succinocar boxamide (SAICAR) synthetase is one of the enzymes in this pathway that catalyzes ATP dependent ligation of carboxyaminoimidazole ribotide (CAIR) with L-aspartate (ASP). Here, we describe eight crystal structures of this enzyme, in C222(1) and H3 space groups, bound to various substrates and substrate mimics from a hyperthermophilic archaea Pyrococcus horikoshii along with molecular dynamics simulations of the structures with substrates. Complexes exhibit minimal deviation from its apo structure. The CAIR binding site displays a preference for pyrimidine nucleotides. In the ADP.TMP-ASP complex, the ASP binds at a position equivalent to that found in Saccharomyces cerevisiae structure (PDB: 2CNU) and thus, clears the ambiguity regarding ASP's position. A possible mode for the inhibition of the enzyme by CTP and UTP, observed earlier in the yeast enzyme, is clearly illustrated in the structures bound to CMP and UMP. The ADP.Mg2+.PO4.CD/MP complex having a phosphate ion between the ATP and CAIR sites strengthens one of the two probable pathways (proposed in Escherichia coli study) of catalytic mechanism and suggests the possibility of a phosphorylation taking place before the ASP's attack on CAIR. Molecular dynamic simulations of this enzyme along with its substrates at 90 degrees C reveal the relative strengths of substrate binding, possible antagonism and the role of Mg2+ ions. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Primates constitute 25-40 % of the frugivore biomass of tropical forests. Primate fruit preference, as a determinant of seed dispersal, can therefore have a significant impact on these ecosystems. Although the traits of fruits included in primate diets have been described, fruit trait preference has been less studied with respect to fruit availability. We examined fruit trait preference and its implications for seed dispersal in the rhesus macaque (Macaca mulatta), a dietarily flexible species and important seed disperser, at the Buxa Tiger Reserve, India. Over a year, we monitored the phenology of selected trees in the study area, observed the feeding behavior of rhesus macaques using scans and focal animal sampling, and documented morphological traits of the fruits/seeds consumed. Using generalized linear modeling, we found that the kind of edible tissue was the chief determinant of fruit consumption, with M. mulatta feeding primarily on fruits with juicy-soft pulp and acting as seed predators for those with no discernible pulp. Overall, the preferred traits were external covers that could be easily pierced by a fingernail, medium to large seeds, true stone-like seeds, and juicy-soft edible tissue, thereby implying that fruit taxa with these traits had a higher probability of being dispersed. Macaques were more selective during the high fruit availability period than the low fruit availability period, preferentially feeding on soft-skinned fruits with juicy-soft pulp. We suggest that further studies be conducted across habitats and time to understand the consistency of interactions between primates and fruits with specific traits to determine the degree of selective pressure (if any) that is exerted by primates on fruit traits.
Resumo:
The current study analysed how the climbing perch Anabas testudineus an air-breathing freshwater fish make choice when a pair of food patches differing in the gain is presented. The results revealed no significant variation in the preference towards the patch of food material cumulated in one place over the same amount of food dispersed in a wider area and located at an equal distance. Additionally, enhancement of the value of dispersed or cumulated patch, by moving it towards the subject fish (spatial discounting) was also found to be ineffective in influencing the food patch utilisation in this species.
Resumo:
RAG complex consisting of RAG1 and RAG2 is a site-specific endonuclease responsible for the generation of antigen receptor diversity. It cleaves recombination signal sequence (RSS), comprising of conserved heptamer and nonamer. Nonamer binding domain (NBD) of RAG1 plays a central role in the recognition of RSS. To investigate the DNA binding properties of the domain, NBD of murine RAG1 was cloned, expressed and purified. Electrophoretic mobility shift assays showed that NBD binds with high affinity to nonamer in the context of 12/23 RSS or heteroduplex DNA. NBD binding was specific to thymines when single stranded DNA containing poly A, C, G or T were used. Biolayer interferometry studies showed that poly T binding to NBD was robust and comparable to that of 12RSS. More than 23 nt was essential for NBD binding at homothymidine stretches. On a double-stranded DNA, NBD could bind to A:T stretches, but not G:C or random sequences. Although NBD is indispensable for sequence specific activity of RAGs, external supplementation of purified nonamer binding domain to NBD deleted cRAG1/cRAG2 did not restore its activity, suggesting that the overall domain architecture of RAG1 is important. Therefore, we define the sequence requirements of NBD binding to DNA.