77 resultados para PHOTOVOLTAIC CURRENTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a one-dimensional mesoscopic Hubbard ring with and without disorder and compute charge and spin stiffness as a measure of the permanent currents. For finite disorder we identify critical disorder strength beyond which the charge currents in a system with repulsive interactions are larger than those for a free system. The spin currents in the disordered repulsive Hubbard model are enhanced only for small U, where the magnetic state of the system corresponds to a charge-density wave pinned to the impurities. For large U, the state of the system corresponds to localized isolated spins and the spin currents are found to be suppressed. For the attractive Hubbard model we find that the charge currents are always suppressed compared to the free system at all length scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a one-dimensional Hubbard model in the presence of disorder. We compute the charge stiffness for a mesoscopic ring as a function of the size L, which is a measure of the persistent currents. We find that for finite disorder the persistent currents of the system with repulsive interactions are larger than those of the system with attractive interactions. This counterintuitive result is due to the fact that local-density fluctuations are reduced in the presence of repulsive interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-similar boundary layer flow of a viscous incompressible electrically conducting fluid over a moving surface in a rotating fluid, in the presence of a magnetic field, Hall currents and the free stream velocity has been studied. The parabolic partial differential equations governing the flow are solved numerically using an implicit finite-difference scheme. The Coriolis force induces overshoot in the velocity profile of the primary flow and the magnetic field reduces/removes the velocity overshoot. The local skin friction coefficient for the primary flow increases with the magnetic field, but the skin friction coefficient for the secondary flow reduces it. Also the local skin friction coefficients for the primary and secondary flows are reduced due to the Hall currents. The effects of the magnetic field, Hall currents and the wall velocity, on the skin friction coefficients for the primary and secondary flows increase with the Coriolis force. The wall velocity strongly affects the flow field. When the wall velocity is equal to the free stream velocity, the skin friction coefficients for the primary and secondary flows vanish, but this does not imply separation. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The insulated mast scheme for the lightning protection system can be found in a few practical designs. Many advantages over conventional protection system are some times envisaged. However, the technical literature on the analysis of such schemes and further quantification of their protection efficacy is rather scarce. As a first step to address this problem, the present work is taken up and the potential rise at the top and ground end currents in insulating mast scheme with single tower is investigated for several tower heights and pertinent values of other parameters. The quantities that are investigated are the potential difference across the insulation and ground end currents for both tower and the ground wires. Quantifications are carried out for the relevant range of stroke current front times. The influence of number of ground wires, their earthing location and to a limited extent, the length of the insulating support have been ascertained. Some relevant discussion on insulation strength is made. These findings are quite novel and aid in quantification of the practical efficacy of the insulated mast scheme. The level of induction to the support tower and possible flashover to the same are not in favour of this scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady free convection flow over an infinite vertical porous plate, which moves with time-dependent velocity in an ambient fluid, has been studied. The effects of the magnetic field and Hall current are included in the analysis. The buoyancy forces arise due to both the thermal and mass diffusion. The partial differential equations governing the flow have been solved numerically using both the implicit finite difference scheme and the difference-differential method. For the steady case, analytical solutions have also been obtained. The effect of time variation on the skin friction, heat transfer and mass transfer is very significant. Suction increases the skin friction coefficient in the primary flow, and also the Nusselt and Sherwood numbers, but the skin friction coefficient in the secondary flow is reduced. The effect of injection is opposite to that of suction. The buoyancy force, injection and the Hall parameter induce an overshoot in the velocity profiles in the primary flow which changes the velocity gradient from a negative to a positive value, but the magnetic field and suction reduce this velocity overshoot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents an electrochemical technique for the polymerization and copolymerization of thiophene derivatives like 7,9-dithiophene-2yl-8H-cyclopenta[a]acenaphthalene-8-one and 3-hexylthiophene. The structural characterization of chemically synthesized monomers and electro-chemically synthesized polymers was carried out by nuclear magnetic resonance and Fourier transform infrared spectroscopy. Thermal characterizations indicate that copolymer has increased thermal stability than that of homopolymer. Morphological studies of the polymerized films carried out by scanning electron microscopy shows network structure of copolymer. Optical properties of the homopolymers and copolymer were studied by UV-visible spectrometer and it was observed that band gap of copolymer is less than the homopolymers. HOMO and LUMO levels, band gap values of the respective polymers were also calculated from the cyclic voltammetry technique with various scan rates. By the peak current obtained from various scan rates shows that all polymerization reactions are diffusion controlled process. Charge transfer resistances of polymers were determined using Nyquist plots. Conductivity of synthesized polymers shows higher conductivity for copolymer than homopolymers. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Till date load-commutated inverter (LCI)-fed synchronous motor drive configuration is popular in high power applications (>10 MW). The leading power factor operation of synchronous motor by excitation control offers this simple and rugged drive structure. On the contrary, LCI-fed induction motor drive is absent as it always draws lagging power factor current. Therefore, complicated commutation circuit is required to switch off thyristors for a current source inverter (CSI)-driven induction motor. It poses the major hindrance to scale up the power rating of CSI-fed induction motor drive. Anew power topology for LCI-fed induction motor drive for medium-voltage drive application is proposed. A new induction machine (active-reactive induction machine) with two sets of three-phase winding is introduced as a drive motor. The proposed power configuration ensures sinusoidal voltage and current at the motor terminals. The total drive power is shared among a thyristor-based LCI, an insulated gate bipolar transistor (IGBT)-based two-level voltage source inverter (VSI), and a three-level VSI. The benefits of SCRs and IGBTs are explored in the proposed drive. Experimental results from a prototype drive verify the basic concepts of the drive.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar cells on thin conformable substrates require conventional plastics such asPS and PMMA that provide better mechanical and environmental stability with cost reduction. We can also tune charge transfer between PPV derivatives and fullerene derivatives via morphology control of the plastics in the solar cells. Our group has conducted morphology evolution studies in nano- and microscale light emitting domains in poly (2-methoxy, 5-(2'-ethyl-hexyloxy)-p-phenylenevinylene) (MEH-PPV) and poly (methyl methacrylate) (PMMA) blends. Our current research has been focused on tricomponent-photoactive solar cells which comprise MEH-PPV, PMMA, and [6,6]-phenyl C61-butyric acid methyl ester (PCBM, Figure 1) in the photoactive layer. Morphology control of the photoactive materials and fine tuning of photovoltaic properties for the solar cells are our primary interest. Similar work has been done by the Sariciftci research group. Additionally, a study on inter- and intramolecular photoinduced charge transfer using MEH-PPV derivatives that have different conjugation lengths (Figure 1, n=1 and 0.85) has been performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we present field emission characteristics of multi-wall carbon nanotube (MWCNT)-polystyrene composites at various weight fractions along the cross-section of sample. Scanning electron microscope images in cross-sectional view reveal that MWCNTs are homogeneously distributed across the thickness and the density of protruding tubes can be scaled with weight fraction of the composite film. Field emission from composites has been observed to vary considerably with density of MWCNTs in the polymer matrix. High current density of 100 mA/cm(2) was achieved at a field of 2.2 V/lm for 0.15 weight fraction. The field emission is observed to follow the Fowler-Nordheim tunneling mechanism, however, electrostatic screening is observed to play a role in limiting the current density at higher weight fractions. (C) 2012 American Institute of Physics. [doi:10.1063/1.3685754]