58 resultados para PART II
Resumo:
Raman spectra of single crystals of (NH4)2M(SO4)2·6 H2O where M=Mg, Zn Ni or Co have been recorded using λ 2537 excitation. Interesting results concerning the substitution of the divalent atoms in the double sulphate lattice on the sulphate and ammonium frequencies are observed. The spectra of these double sulphates are discussed in the light of the known crystal structure details and in relation, to the spectra of the corresponding potassium double sulphates, reported recently by the author. The Raman spectrum of NaNH4SO4·2 H2O has also been recorded for the first time and the results obtained are also included.
Resumo:
Polarisation characters of the Raman lines of calcium fluoride (fluorspar) and potassium aluminium sulphate (alum) were investigated under the following conditions. Unpolarised light was incident normally on a face of the crystal making an angle 22.5° with a cubic face and the light scattered transversely along a cubic axis was analysed by a double image prism kept with its principal axes inclined at 45° to the vertical. Under these conditions the depolarisation factors of the Raman lines belonging to the totally symmetric (A), the doubly degenerate (E) and the triply degenerate (F) modes should be respectively =1, >1 and <1. The characteristic Raman line of CaF2 at 322 cm-1 exhibited a depolarisation value less than 1, showing thereby that the corresponding mode is a triply degenerate one (F). The Raman lines observed in the spectrum of K-alum were also classified and the results were compared with those given by previous investigators using standard crystal orientations.
Resumo:
Investigation on laminar free convection heat transfer from vertical cylinders and wires having a surface temperature variation of the form TW - T∞ = M emx are presented. As in Part I for power law surface temperature variation, the axisymmetric boundary layer equations of mass, momentum and energy are transformed to more convenient forms and solved numerically. The second approximation refines the results of the first upto a maximum of only 2%. Analysis of the results indicates that cylinders can be classified into the same three categories as in Part I, namely, short cylinders, long cylinders, and wires, heat transfer and fluid flow correlations being developed for each case.
Resumo:
A mechanism for the isomerisation of ethyl 1-ethoxycarbonyl-2-oxocyclopentylacetate (I) into a cyclohexane β-keto-ester as proceeding through an intermediate bicyclic /gb-diketone (VII) has been considered as an alternative mechanism to one earlier suggested.1 The determination of the structure of the isomerised β-keto-ester as 2, 3-diethoxycarbonylcyclohexanone (V) has provided support for the earlier mechanism.
Resumo:
A detailed investigation of the hydrolysis of nickel in the lower concentration range has been made. The results have been analysed on the basis of 'Core + links' theory and on the assumption of the formation of one predominant complex. Evidence is obtained for the formation of Ni2 (OH)62- and its stability constant is calculated to be 1038.78
Resumo:
Long-range transport of continental dust makes these particles a significant constituent even at locations far from their sources. It is important to study the temporal variations in dust loading over desert regions and the role of meteorology, in order to assess its radiative impact. In this paper, infrared radiance (10.5-12.5 mu m), acquired by the METEOSAT-5 satellite (similar to 5-km resolution) during 1999 and 2003 was used to quantify wind dependence of dust aerosols and to estimate the radiative forcing. Our analysis shows that the frequency of occurrence of dust events was higher during 2003 compared to 1999. Since the dust production function depends mainly on the surface wind speed over regions which are dry and without vegetation, the role of surface wind on IDDI was examined in detail. It was found that an increase of IDDI with wind speed was nearly linear and the rate of increase in IDDI with surface wind was higher during 2003 compared to 1999. It was also observed that over the Indian desert, when wind speed was the highest during monsoon months (June to August), the dust production rate was lower because of higher soil moisture (due to monsoon rainfall). Over the Arabian deserts, when the wind speed is the highest during June to August, the dust production rate is also highest, as soil moisture is lowest during this season. Even though nothing can be said precisely on the reason why 2003 had a greater number of dust events, examination of monthly mean soil moisture at source regions indicates that the occurrence of high winds simultaneous with high soil moisture could be the reason for the decreased dust production efficiency in 1999. It appears that the deserts of Northwest India are more efficient dust sources compared to the deserts of Saudi Arabia and Northeast Africa (excluding Sahara). The radiative impact of dust over various source regions is estimated, and the regionally and annually averaged top of the atmosphere dust radiative forcing (short wave, clear-sky and over land) over the entire study region (0-35 degrees N; 30 degrees-100 degrees E) was in the range of -0.9 to +4.5 W m(-2). The corresponding values at the surface were in the range of -10 to -25 W m(-2). Our studies demonstrate that neglecting the diurnal variation of dust can cause errors in the estimation of long wave dust forcing by as much as 50 to 100%, and nighttime retrieval of dust can significantly reduce the uncertainties. A method to retrieve dust aerosols during nighttime is proposed. The regionally and annually averaged long wave dust radiative forcing was +3.4 +/- 1.6 W m(-2).
Resumo:
The hot deformation behaviors of β brass in the temperature range of 550°C to 800°C and α-β brass in the temperature range of 450°C to 800°C have been characterized in the strain rate range of 0.001 to 100 s−1 using processing maps developed on the basis of the Dynamic Materials Model. The map for β brass revealed a domain of superplasticity in the entire temperature range and at strain rates lower than 1 s−1, with a maximum efficiency of power dissipation of about 68 pct. The temperature variation of the efficiency of power dissipation in the domain is similar to that of the diffusion coefficient for zinc in β brass, confirming that the diffusion-accommodated flow controls the superplasticity. The material undergoes microstructural instability in the form of adiabatic shear bands and strain markings at temperatures lower than 700°C and at strain rates higher than 10 s−1. The map for α-β brass revealed a wide domain for processing in the temperature range of 550°C to 800°C and at strain rates lower than 1 s−1, with a maximum efficiency of 54 pct occurring at about 750°C and 0.001 s−1. In the domain, the α phase undergoes dynamic recrystallization and controls the hot deformation of the alloy, while the β phase deforms superplastically. At strain rates greater than 1 s−1, α-β brass exhibits microstructural instabilities manifested as flow rotations at lower temperatures and localized shear bands at higher temperatures.
Resumo:
In this paper, the design basis of the conventional Khadi and Village Industries Commission biogas plants has been elucidated. It has been shown that minimisation of the cost of the gas holder alone leads to the narrow and deep digesters of conventional plants. If instead, the total capital cost of the gas holder plus digester is minimised, the optimisation leads to wide and shallow digesters, which are less expensive. To test this alternative, two prototype plants have been designed, constructed and operated. These plants are not only 25–40% cheaper, but their performance is actually slightly better than the conventional plants.
Resumo:
Transition metal ammonium double sulphates (NH4)2M(SO4)2· 6H2O, where M = Fe, Co and Ni react with hydrazine hydrate in air giving crystalline compounds of the general formula (N2H5) [M(N2H3COO)3] H2O. The reaction proceeds through (N2H5)2 M(SO4)2, · 3N2H4, (N2H5)2 [M(OH)4 · (N2H4)2], M(N2H3COO)2 · (N2H4)2 and N2H5 [M(N2 H3 COO)3] intermediates. The reaction sequence is followed by chemical analysis and infrared spectra. A possible reaction mechanism has been suggested.
Resumo:
The constitutive behaviour of agr-beta nickel silver in the temperature range 600�850 °C and strainrate range 0.001�100s�1 was characterized with the help of a processing map generated on the principles of the dynamic materials model. On the basis of the flow-stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)], wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-beta nickel silver exhibits a single domain at temperatures greater than 700 °C and at strain rates lower than 1 s�1 with a maximum efficiency of power dissipation of about 42% occurring at about 850 °C and at 0.1 s�1. In the domain, the agr phase undergoes dynamic recrystallization and controls the deformation of the alloy, while the beta phase deforms superplastically. Optimum conditions for the processing of agr-beta nickel silver are 850 °C and 0.1 s�1. The material undergoes unstable flow at strain rates of 10 and 100 s�1 and in the temperature range 600�750 °C, manifestated in the form of adiabatic shear bands.
Resumo:
Reaction of 1′-aryl substituted spironaphthalenones 1a–d with hydroxylamine hydrochloride in ethanol gave substituted cinnamic ester derivatives 4a–d. Similarly, reaction of spironaphthalenone 1a with different alcohols gave the corresponding esters 4i–m. Reaction of unsymmetrical spironaphthalenones 1e–h with hydroxylamine hydrochloride in presence of ethanol gave the respective esters 4e–h. All the esters were characterised by their spectral data.
Resumo:
Time-domain-finite-wave analysis of engine exhaust systems is usually carried out by means of the method of characteristics. The theory and the computational details of the stationary-frame method have been worked out in the accompanying paper (part I). In this paper (part II), typical computed results are given and discussed. A setup designed for experimental corroboration is described. The results obtained from the simulation are found to be in good agreement with experimental observations.
Resumo:
Current-potential characteristics are obtained numerically for a lone-adsorbate-mediated anodic charge transfer at the electrode-solution interface. An increase in the overpotential leads to the appearance of maxima in the anodic current-potential plots instead of the extended activationless region (i.e. a saturation current at large positive overpotentials) predicted by the direct heterogeneous outer-sphere anodic charge transfer process. A detailed analysis of the dependence of current-potential profiles and other kinetic parameters on various system parameters is also presented.