51 resultados para PANCREATIC NECROSIS
Resumo:
Groundnut Bud Necrosis Virus (GBNV) is a tripartite ambisense RNA plant virus that belongs to serogroup IV of Tospovirus genus. Non-Structural protein-m (NSm), which functions as movement protein in tospoviruses, is encoded by the M RNA. In this communication, we demonstrate that despite the absence of any putative transmembrane domain, GBNV NSm associates with membranes when expressed in E. coli as well as in N. benthamiana. Incubation of refolded NSm with liposomes ranging in size from 200-250 nm resulted in changes in the secondary and tertiary structure of NSm. A similar behaviour was observed in the presence of anionic and zwitterionic detergents. Furthermore, the morphology of the liposomes was found to be modified in the presence of NSm. Deletion of coiled coil domain resulted in the inability of in planta expressed NSm to interact with membranes. Further, when the C-terminal coiled coil domain alone was expressed, it was found to be associated with membrane. These results demonstrate that NSm associates with membranes via the C-terminal coiled coil domain and such an association may be important for movement of viral RNA from cell to cell.
Resumo:
Background: Increased incidence of lung cancer among pulmonary tuberculosis patients suggests mycobacteria-induced tumorigenic response in the host. The alveolar epithelial cells, candidate cells that form lung adenocarcinoma, constitute a niche for mycobacterial replication and infection. We thus explored the possible mechanism of M. bovis Bacillus Calmette-Guerin (BCG)-assisted tumorigenicity in type II epithelial cells, human lung adenocarcinoma A549 and other cancer cells. Methods: Cancer cell lines originating from lung, colon, bladder, liver, breast, skin and cervix were treated with tumor necrosis factor (TNF)-alpha in presence or absence of BCG infection. p53, COP1 and sonic hedgehog (SHH) signaling markers were determined by immunoblotting and luciferase assays, and quantitative real time PCR was done for p53-responsive pro-apoptotic genes and SHH signaling markers. MTT assays and Annexin V staining were utilized to study apoptosis. Gain-and loss-of-function approaches were used to investigate the role for SHH and COP1 signaling during apoptosis. A549 xenografted mice were used to validate the contribution of BCG during TNF-alpha treatment. Results: Here, we show that BCG inhibits TNF-alpha-mediated apoptosis in A549 cells via downregulation of p53 expression. Substantiating this observation, BCG rescued A549 xenografts from TNF-alpha-mediated tumor clearance in nude mice. Furthermore, activation of SHH signaling by BCG induced the expression of an E3 ubiquitin ligase, COP1. SHH-driven COP1 targeted p53, thereby facilitating downregulation of p53-responsive pro-apoptotic genes and inhibition of apoptosis. Similar effects of BCG could be shown for HCT116, T24, MNT-1, HepG2 and HELA cells but not for HCT116 p53(-/-) and MDA-MB-231 cells. Conclusion: Our results not only highlight possible explanations for the coexistence of pulmonary tuberculosis and lung cancer but also address probable reasons for failure of BCG immunotherapy of cancers.
Resumo:
The nonstructural protein NSs, encoded by the S RNA of groundnut bud necrosis virus (GBNV) (genus Tospovirus, family Bunyaviridae) has earlier been shown to possess nucleic-acid-stimulated NTPase and 50 a phosphatase activity. ATP hydrolysis is an essential function of a true helicase. Therefore, NSs was tested for DNA helicase activity. The results demonstrated that GBNV NSs possesses bidirectional DNA helicase activity. An alanine mutation in the Walker A motif (K189A rNSs) decreased DNA helicase activity substantially, whereas a mutation in the Walker B motif resulted in a marginal decrease in this activity. The parallel loss of the helicase and ATPase activity in the K189A mutant confirms that NSs acts as a non-canonical DNA helicase. Furthermore, both the wild-type and K189A NSs could function as RNA silencing suppressors, demonstrating that the suppressor activity of NSs is independent of its helicase or ATPase activity. This is the first report of a true helicase from a negative-sense RNA virus.
Resumo:
The genomic sequences of several RNA plant viruses including cucumber mosaic virus, brome mosaic virus, alfalfa mosaic virus and tobacco mosaic virus have become available recently. The former two viruses are icosahedral while the latter two are bullet and rod shaped, respectively in particle morphology. The non-structural 3a proteins of cucumber mosaic virus and brome mosaic virus have an amino acid sequence homology of 35% and hence are evolutionarily related. In contrast, the coat proteins exhibit little homology, although the circular dichroism spectrum of these viruses are similar. The non-coding regions of the genome also exhibit variable but extensive homology. Comparison of the brome mosaic virus and alfalfa mosaic virus sequences reveals that they are probably related although with a much larger evolutionary distance. The polypeptide folds of the coat protein of three biologically distinct isometric plant viruses, tomato bushy stunt virus, southern bean mosaic virus and satellite tobacco necrosis virus have been shown to display a striking resemblance. All of them consist of a topologically similar 8-standard β-barrel. The implications of these studies to the understanding of the evolution of plant viruses will be discussed.
Resumo:
Recent experiments in this laboratory on structural transformations caused by controlled dehydration of protein crystals have been reviewed. X-ray diffraction patterns of the following crystals have been examined under varying conditions of environmental humidity in the relative humidity range of 100-75%: a new crystal form of bovine pancreatic ribonuclease A grown from acetone solution in tris buffer (I), the well-known monoclinic form of the protein grown from aqueous ethanol (II), the same form grown from a solution of 2-methyl pentan-2,4-diol in phosphate buffer (III), tetragonal (IV), orthorhombic (V), monoclinic (VI) and triclinic (VII) hen egg white lysozyme, porcine 2 Zn insulin (VIII), porcine 4 Zn insulin (IX) and the crystals of concanavalin A(X). I, II, IV, V and VI undergo one or more transformations as evidenced by discontinuous changes in the unit cell dimensions, the diffraction pattern and the solvent content. Such water-mediated transformations do not appear to occur in the remaining crystals in the relative humidity range explored. The relative humidity at which the transformation occurs is reduced when 2-methyl pentan-2,4-diol is present in the mother liquor. The transformations are affected by the crystal structure but not by the amount of solvent in the crystals. The X-ray investigations reviewed here and other related investigations emphasize the probable importance of water-mediated transformations in exploring hydration of proteins and conformational transitions in them.
Resumo:
1. The mechanism of absorption of phosphatidylcholine was studied in rats by injecting into the intestine phosphatidylcholine specifically labelled either in the fatty acid or in the glycerol moiety or with 32P, when considerable amounts of 1-acyl-lysophosphatidylcholine were found in the intestinal lumen. 2-([14C]Acyl)phosphatidylcholine gave markedly more radioactive unesterified fatty acids in the lumen, compared with the 1-([14C]acyl) derivative. Some of the radioactivity from either the fatty acid or the glycerol moiety of the injected phosphatidylcholine appeared in the mucosal triacylglycerols. 2. Injection of 32P-labelled phosphatidylcholine or 32P-labelled lysophosphatidylcholine led to the appearance of radioactive glycerylphosphorylcholine, glycerophosphate and Pi in the mucosa. 3. Rat mucosa was found to contain a highly active glycerylphosphorylcholine diesterase. 4. It was concluded that the dietary phosphatidylcholine is hydrolysed in the intestinal lumen by the pancreatic phospholipase A to 1-acylglycerylphosphorylcholine, which on entering the mucosal cell is partly reacylated to phosphatidylcholine, and the rest is further hydrolysed to glycerylphosphorylcholine, glycerophosphate, glycerol and Pi. The fatty acids and glycerophosphate are then reassembled to give triacylglycerols via the Kennedy (1961) pathway.
Resumo:
Different purified proteins were shown to give purple formazan bands corresponding to the protein stain following electrophoresis on polyacrylamide gels, in the presence of nitrobluetetrazolium (NBT) and phenazine methosulfate (PMS). Both PMS and NBT are needed for formazan production which has a favorable pH at 8.5. Sulfhydryl blockers in the incubation medium inhibited this color development to different extents. While proteins with free SH groups like bovine serum albumin, ovalbumin, and urease showed this pyridine nucleotide independent artifact, nonthiol proteins, viz., bovine pancreatic ribonuclease A, and riboflavin-binding protein from chicken egg white failed to do so. The nonenzymatic formazan formation observed with different proteins could also be shown in an in vitro assay system. It is clear that the “nothing dehydrogenase” phenomenon observed in several cases may be due to the thiol group-mediated artifactual staining of proteins.
Resumo:
Hepatotoxicity due to overdose of the analgesic and antipyretic acetaminophen (A-PAIP) is a major cause of liver failure in adults. To better understand the contributions of different signaling pathways, the expression and role of Ras activation was evaluated after oral dosing of mice with APAP (400-500 mg/kg). Ras-guanosine triphosphate (GTP) is induced early and in an oxidative stress-dependent manner. The functional role of Ras activation was studied by a single intraperitoneal injection of the neutral sphingomyelinase and farnesyltransferase inhibitor (FTI) manumycin A (I mg/kg), which lowers induction of Ras-GTP and serum amounts of alanine aminotransferase (ALT). APAP dosing decreases hepatic glutathione amounts, which are not affected by manumycin A treatment. However, APAP-induced activation of c-Jun N-terminal kinase, which plays an important role, is reduced by manumycin A. Also, APAP-induced mitochondrial reactive oxygen species are reduced by manumycin A at a later time point during liver injury. Importantly, the induction of genes involved in the inflammatory response (including iNos, gp91phox, and Fasl) and serum amounts of proinflammatory cytokines interferon-gamma (IFN gamma) and tumor necrosis factor alpha, which increase greatly with APAP challenge, are suppressed with manumycin A. The FTI ctivity of manumycin A is most likely involved in reducing APAP-induced liver injury, because a specific neutral sphingomyelinase inhibitor, GW4869 (I mg/kg), did not show any hepatoprotective effect. Notably, a structurally distinct FTI, gliotoxin (I mg/kg), also inhibits Ras activation and reduces serum amounts of ALT and IFN-gamma after APAP dosing. Finally, histological analysis confirmed the hepatoprotective effect f manumycin A and gliotoxin during APAP-induced liver damage. Conclusion: This study identifies a key role for Ras activation and demonstrates the therapeutic efficacy of FTIs during APAP-induced liver injury.
Resumo:
The red genes of phage lambda specify two proteins, exonuclease and beta protein, which are essential for its general genetic recombination in recA- cells. These proteins seem to occur in vivo as an equimolar complex. In addition, beta protein forms a complex with another polypeptide, probably of phage origin, of Mr 70,000. The 70-kDa protein appears to be neither a precursor nor an aggregated form of either exonuclease or beta protein, since antibodies directed against the latter two proteins failed to react with 70-kDa protein on Ouchterlony double diffusion analysis. beta protein promotes Mg2+-dependent renaturation of complementary strands (Kmiec, E., and Holloman, W. K. (1981) J. Biol. Chem. 256, 12636-12639). To look for other pairing activities of beta protein, we developed methods of purification to free it of associated exonuclease. Exonuclease-free beta protein appeared unable to cause the pairing of a single strand with duplex DNA; however, like Escherichia coli single strand binding protein (SSB), beta protein stimulated formation of joint molecules by recA protein from linear duplex DNA and homologous circular single strands. Like recA protein, but unlike SSB, beta protein promoted the joining of the complementary single-stranded ends of phage lambda DNA. beta protein specifically protected single-stranded DNA from digestion by pancreatic DNase. The half-time for renaturation catalyzed by beta protein was independent of DNA concentration, unlike renaturation promoted by SSB and spontaneous renaturation, which are second order reactions. Thus, beta protein resembles recA protein in its ability to bring single-stranded DNA molecules together and resembles SSB in its ability to reduce secondary structure in single-stranded DNA.
Resumo:
Mycobacterium tuberculosis is the etiologic agent of human tuberculosis and is estimated to infect one-third of the world's population. Control of M. tuberculosis requires T cells and macrophages. T-cell function is modulated by the cytokine environment, which in mycobacterial infection is a balance of proinflammatory (interleukin-1 [IL-1], IL-6, IL-8, IL-12, and tumor necrosis factor alpha) and inhibitory (IL-10 and transforming growth factor beta [TGF-beta]) cytokines. IL-10 and TGF-beta are produced by M. tuberculosis-infected macrophages. The effect of IL-10 and TGF-beta on M. tuberculosis-reactive human CD4(+) and gammadelta T cells, the two major human T-cell subsets activated by M. tuberculosis, was investigated. Both IL-10 and TGF-beta inhibited proliferation and gamma interferon production by CD4(+) and gammadelta T cells. IL-10 was a more potent inhibitor than TGF-beta for both T-cell subsets. Combinations of IL-10 and TGF-beta did not result in additive or synergistic inhibition. IL-10 inhibited gammadelta and CD4(+) T cells directly and inhibited monocyte antigen-presenting cell (APC) function for CD4(+) T cells and, to a lesser extent, for gammadelta T cells. TGF-beta inhibited both CD4(+) and gammadelta T cells directly and had little effect on APC function for gammadelta and CD4(+) T cells. IL-10 down-regulated major histocompatibility complex (MHC) class I, MHC class II, CD40, B7-1, and B7-2 expression on M. tuberculosis-infected monocytes to a greater extent than TGF-beta. Neither cytokine affected the uptake of M. tuberculosis by monocytes. Thus, IL-10 and TGF-beta both inhibited CD4(+) and gammadelta T cells but differed in the mechanism used to inhibit T-cell responses to M. tuberculosis.
Resumo:
Grewia tiliaefolia is widely used in traditional Indian medicines to cure jaundice, biliousness, dysentery and the diseases of blood. Bioassay-guided fractionation of methanolic extract of the G. tiliaefolia bark has resulted in the isolation of D-erythro-2-hexenoic acid gamma-lactone (EHGL) and gulonic acid gamma-lactone (GAGL). Hepatoprotective activity of the methanolic extract and the isolated constituents were evaluated against CCl4-induced hepatotoxicity in rats. The treatment with methanolic extract, EHGL and GAGL at oral doses of 100, 150 and 60 mg/kg respectively with concomitant CCl4 intraperitoneal injection (I ml/kg) significantly reduced the elevated plasma levels of aminotransferases, alkaline phosphatase and the incidence of liver necrosis compared with the CCl4-injected group without affecting the concentrations of serum bilirubin and hepatic markers. EHGL and GAGL significantly inhibited the elevated levels of thiobarbituric acid reactive substances and glutathione in liver homogenates. Histology of the liver tissues of the extract and isolated constituents treated groups showed the presence of normal hepatic cords, absence of necrosis and fatty infiltration as similar to the normal control. The results revealed that the hepatoprotective activity of EHGL is significant as similar to the standard drug silymarin. To clarify the influence of the extract and isolated constituents on the protection of oxidative-hepatic damage, we examined in vitro antioxidant properties of the test compounds. The extract and the constituents showed significant free radical scavenging activity. These results suggest that the extract as well as the constituents could protect the hepatocytes from CCl4-induced liver damage perhaps, by their anti-oxidative effect on hepatocytes, hence eliminating the deleterious effects of toxic metabolites from CCl4, (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Young male rats maintained on a diet containing 1% cholesterol were sacrificed at the end of 1st, 2nd, 3rd, 5th, and 7th week. Acetone powders prepared from their intestinal mucosa and pancreas were tested for the synthetic and hydrolytic activities for Vitamin A and cholesterol esters. The esterifying activity of the mucosal enzymes for both Vitamin A and cholesterol increased progressively up to the end of the 5th week; the increase in esterification of cholesterol was more marked with respect to saturated fatty acids, as compared to the unsaturated ones. The pancreatic enzymes remained unaffected. It is suggested that one of the reasons for the accumulation of cholesterol esters in animal tissues may be the increased esterification of the sterol in the mucosa induced by dietary cholesterol.
Resumo:
32P labelled 5S RNA isolated fromMycobacterium smegmatis was digested withT 1 and pancreatic ribonucleases separately and fingerprinted by two dimensional high voltage electrophoresis on thin-layer DEAE-cellulose plates. The radioactive spots were sequenced and their molar yields were determined. The chain length of the 5S RNA was found to be 120. It showed resemblances to both prokaryotic and eukaryotic 5S RNAs.
Resumo:
Biochemical, histopathological and ultrastructural changes occurring at different time points after intraperitoneal administration of a single dose of pulegone (300 mg/kg) were studied. Significant decreases in the level of liver microsomal cytochrome P-450 (67%), heme (37%), aminopyrine N-demethylase (60%) and glucose-6-phosphatase (58%), were noticed 24 hr after pulegone treatment. Alanine amino transferase (ALT) levels increased in a time dependent manner, following exposure of rats to pulegone. Light microscopic studies of liver tissues showed dilation of central veins and distention of sinusoidal spaces 6 hr after pulegone treatment. Initial centrilobular necrosis was noticed at 12 hr. Centrilobular necrosis became severe at 18 hr and nuclear changes included karyorrhexis and karyolysis. Midzonal and periportal degenerative changes in addition to centrilobular necrosis was observed 24 hr after pulegone administration. Electron microscopic changes showed severe degeneration of endoplasmic reticulum, swelling of mitochondria and nuclear changes, 24 hr after administration of pulegone. The time course profile of the hepatocytes after treatment with pulegone indicates that endoplasmic reticulum is the organelle most affected, following which other degenerative changes occur ultimately leading to cell death.
Resumo:
Two fragments of pancreatic ribonuclease A, a truncated version of S-peptide (residues 1-15) and S-protein (residues 21-124), combine to give a catalytically active complex. We have substituted the wild-type residue at position 13, methionine (Met), with norleucine (Nle), where the only covalent change is the replacement of the sulfur atom with a methylene group. The thermodynamic parameters associated with the binding of this variant to S-protein, determined by titration calorimetry in the temperature range 10-40 degrees C, are reported and compared to values previously reported [Varadarajan, R., Connelly, P. R., Sturtevant, J. M., & Richards, F. M. (1992) Biochemistry 31, 1421-1426] for other position 13 analogs. The differences in the free energy and enthalpy of binding between the Met and Nle peptides are 0.6 and 7.9 kcal/mol at 25 degrees C, respectively. These differences are slightly larger than, but comparable to, the differences in the values for the Met/Ile and Met/Leu pairs. The structure of the mutant complex was determined to 1.85 Angstrom resolution and refined to an R-factor of 17.4% The structures of mutant and wild-type complexes are practically identical although the Nle side chain has a significantly higher average B-factor than the corresponding Met side chain. In contrast, the B-factors of the atoms of the cage of residues surrounding position 13 are all somewhat lower in the Nle variant than in the Met wild-type. Thus, the large differences in the binding enthalpy appear to reside entirely in the difference in chemical properties or dynamic behavior of the -S- and -CH2- groups and not in differences in the geometry of the side chains or the internal cavity surface. In addition, a novel method of obtaining protein stability data by means of isothermal titration calorimetry is introduced.