23 resultados para P-FACTOR


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We calculate upper and lower bounds on the modulus of the pion electromagnetic form factor on the unitarity cut below the omega pi inelastic threshold, using as input the phase in the elastic region known via the Fermi-Watson theorem from the pi pi P-wave phase shift, and a suitably weighted integral of the modulus squared above the inelastic threshold. The normalization at t = 0, the pion charge radius and experimental values at spacelike momenta are used as additional input information. The bounds are model independent, in the sense that they do not rely on specific parametrizations and do not require assumptions on the phase of the form factor above the inelastic threshold. The results provide nontrivial consistency checks on the recent experimental data on the modulus available below the omega pi threshold from e(+)e(-) annihilation and tau-decay experiments. In particular, at low energies the calculated bounds offer a more precise description of the modulus than the experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal oxidation process of the indium nitride (InN) nanorods (NRs) was studied. The SEM studies reveal that the cracked and burst mechanism for the formation of indium oxide (In2O3) nanostructures by oxidizing the InN NRs at higher temperatures. XRD results confirm the bcc crystal structure of the as prepared In2O3 nanostructures. Strong and broad photoluminescence spectrum located at the green to red region with maximum intensity at 566 nm along with a weak ultraviolet emission at 338 nm were observed due to oxygen vacancy levels and free excitonic transitions, respectively. The valence band onset energy of 2.1 eV was observed from the XPS valence band spectrum, clearly justifies the alignment of Fermi level to the donor level created due to the presence of oxygen vacancies which were observed in the PL spectrum. The elemental ratio In:O in as prepared In2O3 was found to be 42:58 which is in close agreement with the stoichiometric value of 40:60. A downward shift was observed in the Raman peak positions due to a possible phonon confinement effect in the nanoparticles formed in bursting mechanism. Such single junction devices exhibit promising photovoltaic performance with fill factor and conversion efficiency of 21% and 0.2%, respectively, under concentrated AM1.5 illumination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report focuses on the structural and optical properties of the GaN films grown on p-Si (100) substrates along with photovoltaic characteristics of GaN/p-Si heterojunctions fabricated with substrate nitridation and in absence of substrate nitridation. The high resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), Raman and photoluminescence (PL) spectroscopic studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN epifilms grown with silicon nitride buffer layer when compared with the sample grown without silicon nitride buffer layer. The low temperature PL shows a free excitonic (FX) emission peak at 3.51 eV at the temperature of 5 K with a very narrow line width of 35 meV. Temperature dependent PL spectra follow the Varshni equation well and peak energy blue shifts by similar to 63 meV from 300 to 5 K. Raman data confirms the strain free nature and reasonably good crystallinity of the films. The GaN/p-Si heterojunctions fabricated without substrate nitridation show a superior photovoltaic performance compared to the devices fabricated in presence of substrate nitridation. The discussions have been carried out on the junction properties. Such single junction devices exhibit a promising fill factor and conversion efficiency of 23.36 and 0.12 %, respectively, under concentrated AM1.5 illumination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin like growth factor binding protein 4 (IGFBP4) regulates growth and development of tissues and organs by negatively regulating IGF signaling. Among most cancers, IGFBP4 has growth inhibitory role and reported as a down-regulated gene, except for renal cell carcinoma, wherein IGFBP4 promotes tumor progression. IGFBP4 expression has been shown to be higher in increasing grades of astrocytoma. However, the functional role of IGFBP4 in gliomas has not been explored. Surgical biopsies of 20 normal brain and 198 astrocytoma samples were analyzed for IGFBP4 expression by qRT-PCR. Highest expression of IGFBP4 mRNA was seen in GBM tumors compared to control brain tissues (median log2 of 2.035, p < 0.0001). Immunohistochemical analysis of 53 tissue samples revealed predominant nuclear staining of IGFBP4, seen maximally in GBMs when compared to DA and AA tumors (median LI = 29.12 +/- A 16.943, p < 0.001). Over expression of IGFBP4 in U343 glioma cells resulted in up-regulation of molecules involved in tumor growth, EMT and invasion such as pAkt, pErk, Vimentin, and N-cadherin and down-regulation of E-cadherin. Functionally, IGFBP4 over expression in these cells resulted in increased proliferation, migration and invasion as assessed by MTT, transwell migration, and Matrigel invasion assays. These findings were confirmed upon IGFBP4 knockdown in U251 glioma cells. Our data suggest a pro-tumorigenic role for IGFBP4 in glioma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Heat shock factor binding protein (HSBP) was originally discovered in a yeast two-hybrid screen as an interacting partner of heat shock factor (HSF). It appears to be conserved in all eukaryotes studied so far, with yeast being the only exception. Cell biological analysis of HSBP in mammals suggests its role as a negative regulator of heat shock response as it appears to interact with HSF only during the recovery phase following exposure to heat stress. While the identification of HSF in the malaria parasite is still eluding biologists, this study for the first time, reports the presence of a homologue of HSBP in Plasmodium falciparum. Methods: PfHSBP was cloned and purified as his-tag fusion protein. CD (Circular dichroism) spectroscopy was performed to predict the secondary structure. Immunoblots and immunofluorescence approaches were used to study expression and localization of HSBP in P. falciparum. Cellular fractionation was performed to examine subcellular distribution of PfHSBP. Immunoprecipitation was carried out to identify HSBP interacting partner in P. falciparum. Results: PfHSBP is a conserved protein with a high helical content and has a propensity to form homo-oligomers. PfHSBP was cloned, expressed and purified. The in vivo protein expression profile shows maximal expression in trophozoites. The protein was found to exist in oligomeric form as trimer and hexamer. PfHSBP is predominantly localized in the parasite cytosol, however, upon heat shock, it translocates to the nucleus. This study also reports the interaction of PfHSBP with PfHSP70-1 in the cytoplasm of the parasite. Conclusions: This study emphasizes the structural and biochemical conservation of PfHSBP with its mammalian counterpart and highlights its potential role in regulation of heat shock response in the malaria parasite. Analysis of HSBP may be an important step towards identification of the transcription factor regulating the heat shock response in P. falciparum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The zinc finger transcription factors Mxr1p and Rop are key regulators of methanol metabolism in the methylotrophic yeast, Pichia pastoris, while Trm1p and Trm2p regulate methanol metabolism in Candida boidinii. Here, we demonstrate that Trm1p is essential for the expression of genes of methanol utilization (mut) pathway in P. pastoris as well. Expression of AOXI and other genes of mut pathway is severely compromised in P. pastoris Delta Trm1 strain resulting in impaired growth on media containing methanol as the sole source of carbon. Trm1p localizes to the nucleus of cells cultured on glucose or methanol. The zinc finger domain of Mxr1p but not Trm1p binds to AOXI promoter sequences in vitro, indicating that these two positive regulators act by different mechanisms. We conclude that both Trm1p and Mxr1p are essential for the expression of genes of mut pathway in P. pastoris and the mechanism of transcriptional regulation of mut pathway may be similar in P. pastoris and C. boidinii. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin-like growth factors (IGFs) are essential for growth and survival that suppress apoptosis and promote cell cycle progression, angiogenesis, and metastatic activities in various cancers. The IGFs actions are mediated through the IGF-1 receptor that is involved in cell transformation induced by tumour. These effects depend on the bioavailability of IGFs, which is regulated by IGF binding proteins (IGFBPs). We describe here the role of the IGF system in cancer, proposing new strategies targeting this system. We have attempted to expand the general viewpoint on IGF-1R, its inhibitors, potential limitations of IGF-1R, antibodies and tyrosine kinase inhibitors, and IGFBP actions. This review discusses the emerging view that blocking IGF via IGFBP is a better option than blocking IGF receptors. This can lead to the development of novel cancer therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transactivator protein C is required for the expression of bacteriophage Mu late genes from lys, I, P and mom promoters during lytic life cycle of the phage. The mechanism of transcription activation of mom gene by C protein is well understood. C activates transcription at Pmom by initial unwinding of the promoter DNA, thereby facilitating RNA polymerase (RNAP) recruitment. Subsequently, C interacts with the (sic) subunit of RNAP to enhance promoter clearance. The mechanism by which C activates other late genes of the phage is not known. We carried out promoter-polymerase interaction studies with all the late gene promoters to determine the individual step of C mediated activation. Unlike at P-mom, at the other three promoters, RNAP recruitment and closed complex formation are not C dependent. Instead, the action of C at P-lys, P-I, and P-P is during the isomerization from closed complex to open complex with no apparent effect at other steps of initiation pathway. The mechanism of transcription activation of mom and other late promoters by their common activator is different. This distinction in the mode of activation (promoter recruitment and escape versus isomerization) by the same activator at different promoters appears to be important for optimized expression of each of the late genes.