219 resultados para Oxygen-tension
Resumo:
Oxygen atoms in the middle Cu---O layer of YBa2Cu3O7 consisting of strings of corner-connected (CuO4)∞ units are shown to be crucial for superconductivity. Importance of hole-hole pairing giving rise to O---O bonds is also indicated.
Resumo:
He II UPS and XPS study of oxygen adsorption on Ni and barium-dosed Ni and Cu surfaces at 300 K show two types of oxygen species which are assigned to O2- and O1- (ad).
Resumo:
Photo-oxidation of α,β-unsaturated thiones yields the corresponding ketones as the only product. Studies carried out on three systems, namely thioketones, α,β-unsaturated thiones and thioketenes, have revealed that there exists a similarity in their mechanism of oxidation. It has been suggested that the thiocarbonyl chromophore is the site of attack by singlet oxygen in α,β-unsaturated thiones and that the adjacent C-C double bond is inert under these conditions. Absence of sulphine during the oxidation of α,β-unsaturated thiones is attributed to the electronic factors operating on the zwitterionic/diradical intermediate. While α,β-unsaturated ketones are poorly reactive, α,β-unsaturated thiones are highly reactive toward singlet oxygen.
Resumo:
Drop formation at conical tips which is of relevance to metallurgists is investigated based on the principle of minimization of free energy using the variational approach. The dimensionless governing equations for drop profiles are computer solved using the fourth order Runge-Kutta method. For different cone angles, the theoretical plots of XT and ZT vs their ratio, are statistically analyzed, where XT and ZT are the dimensionless x and z coordinates of the drop profile at a plane at the conical tip, perpendicular to the axis of symmetry. Based on the mathematical description of these curves, an absolute method has been proposed for the determination of surface tension of liquids, which is shown to be preferable in comparison with the earlier pendent-drop profile methods.
Resumo:
Surface aeration systems employed in activated sludge plants are the most energy-intensive units of the plants and typically account for a higher percentage of the treatment facility's total energy use. The geometry of the aeration tank imparts a major effect on the system efficiency. It is said that at optimal geometric onditions, systems exhibits the maximum efficiency. Thus the quantification of the optimal geometric conditions in surface aeration tanks is needed. Optimal geometric conditions are also needed to scale up the laboratory result to the field installation. In the present work, experimental studies have been carried out on baffled and unbaffled circular surface aeration tanks to ascertain the optimal geometric conditions. It is found that no optimal geometric conditions exist for the liquid/water depth in circular surface aeration tanks; however, for design purposes, a standard value has been assumed. Based on the optimal geometric conditions, a scale-up equation has been developed for the baffled circular surface aeration tanks.
Resumo:
Oxygen Consumption by alternative oxidase (AOX), present in mitochondria of many angiosperms, is known to be cyanide-resistant in contrast to cytochrome oxidase. Its activity in potato tuber (Solarium tuberosum L.) was induced following chilling treatment at 4 degrees C.About half of the total O-2 consumption of succinate oxidation in such mitochondria was found to be sensitive to SHAM, a known inhibitor of AOX activity. Addition of catalase to the reaction mixture of AOX during the reaction decreased the rate of SHAM-sensitive oxygen consumption by nearly half, and addition at the end of the reaction released nearly half of the consumed oxygen by AOX, both typical of catalase action on H2O2. These findings with catalase suggest that the product of reduction of AOX is H2O2 and not H2O, as previously Surmised. In potatoes Subjected to chill stress (4 degrees C) for periods of 3, 5 and >= 8 days the activity of AOX in mitochondria increased progressively with a corresponding increase in the AOX protein detected by immunoblot of the protein.
Resumo:
Water adsorbs molecularly on a clean Zn(0001) surface; on a surface covered with atomic oxygen, however, hydroxyl species is produced due to proton abstraction by the surface oxygen atoms. Methanol, molecularly adsorbed on a clean surface at 80 K, transforms to methoxy species above 110 K. On an atomic oxygen-covered surface, adsorbed methanol gives rise to methoxy species and water, the latter arising from proton abstraction. HCHO adsorbs molecularly at 80 K on both clean as well as oxygen-covered surfaces and polymerizes at higher temperatures. Formic acid does not adsorb on a clean Zn surface, but on an oxygen-covered surface gives rise to formate and hydroxyl species.
Resumo:
Oxygen is shown to adsorb molecularly on gold as well as on Ag and Pt. UV and X-ray photoelectron spectroscopy and Auger electron spectroscopy have been employed to investigate electron states of molecularly adsorbed oxygen.
Resumo:
We have considered a two-band Hubbard model having interlaced Cu-3d(x2−y2) and O-2p(x, y) orbitals representing the CuO2 square planes. Simple CuO2 -cluster calculation suggests that the additional holes created by doping stay mainly on oxygen. Motion of an oxygen hole interlacing with the antiferromagnetically correlated background of copper spins, creates a string of high energy spin configuration of finite length giving mass renormalization. Another hole of opposite spin can now anneal this string tension providing a triangular pairing potential for large pair momentum. The latter implies unusual Bose condensation of the wake-bound compact Bose-like pairs on a non-zero momentum shell. Effect of disorder favouring condensation at the mobility edge is pointed out.
Resumo:
EELS and XPS studies show the presence of both adsorbed atomic and molecular oxygen at low temperatures. The nature of the oxide layer formed on the surface has been characterized by angular dependent and variable temperature EELS. A loss peak around 550 cm−1 is assigned to an electronic transition.
Resumo:
EELS studies provide definitive evidence for the hydroxylation of oxygen-covered Cu(110) and Zn(0001) surfaces on interaction with proton donor molecules such as H2O, CH3OH, HCOOH, NH3 and (CH3)2NH. The occurrence of surface hydroxylation is unambigouusly shown by a study of the interaction of H2S and HCl with an oxygen covered Cu(110) surface.
Resumo:
From a temperature programmed desorption study employing a quadrupole mass spectrometer, the superconducting oxide YBa2Cu3O7−δ (δ = 0.05) showed two distinct oxygen desorption peaks, one below and one above 470°C. The activation energy of oxygen desorption of the superconducting oxide was 28 Kcals/mole and that of non-superconducting oxide (YBa2Cu3O6.5) was 54 Kcals/mole. No impurity peaks due to H2O, CO and CO2 from the bulk or adsorbed on surfaces could be observed when a well prepared superconducting oxide was heated up to 650°C.
Resumo:
The intensity of inelastically scattered electrons measured by electron energy loss spectroscopy has been employed to monitor the surface conductivity of YBa2Cu3O6.9 as a function of temperature. The study shows a drastic change in surface conductivity precedes the superconducting transition at 90K. The increase in surface conductivity is accompanied by the formation of dimerized holes in the oxygen derived p-band. This phenomenon is not observed in the non-superconducting YBa2Cu3O6.2.