320 resultados para Oscillatory Convection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of melt convection oil the performance of beat sinks with Phase Change Material (PCM) is presented in this paper. The beat sink consists of aluminum plate fins embedded in PCM and heat flux is supplied from the bottom. The design of such a heat sink requires optimization with respect to its geometrical parameters. The objective of the optimization is to maximize the heat sink operation time for the prescribed heat flux and the critical chip temperature. The parameters considered for optimization are fin number and fill thickness. The height and base plate thickness of heat sink are kept constant in the present analysis. An enthalpy based CFD model is developed, which is capable Of Simulating phase change and associated melt convection. The CFD model is Coupled with Genetic Algorithm (GA) for carrying out the optimization. Two cases are considered, one without melt convection (conduction regime) and the other with convection. It is found that the geometrical optimizations of heat sinks are different for the two cases, indicating the importance of inch convection in the design of heat sinks with PCMs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis has been carried out to study the non-Darcy natural convention flow of Newtonian fluids on a vertical cone embedded in a saturated porous medium with power-law variation of the wall temperature/concentration or heat/mass flux and suction/injection with the streamwise distance x. Both non-similar and self-similar solutions have been obtained. The effects of non-Darcy parameter, ratio of the buoyancy forces due to mass and heat diffusion, variation of wall temperature/concentration or heat/mass flux and suction/injection on the Nusselt and Sherwood numbers have been studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady free convection boundary layer hydromagnectic flow near a stagnation point of a three-dimensional body with applied magnetic field and time-dependent wall temperature has been studied. Both semi-semilar and self-similar cases have been considered. The equations governing the above flow have been solved numerically using an implicit finite-difference scheme due to Keller. The magnetic field is found to reduce both the heat transfer and skin friction. The effect of the variation of the wall temperature with time and of mass transfer is found to be more pronounced on the heat transfer than on the skin friction. In self-similar case, for decelerating flow, there is temperature overshoot in the presence of fmagnetic field, but in semi-similar case overshoot occurs even without magnetic field due to the unsteadiness

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conjugate natural convection in a vertical annulus with a centrally located vertical heat generating rod is studied numerically. The governing equations are discretized on a staggered mesh and are solved using a pressure-correction algorithm. A parametric study is performed by varying the Grashof number, aspect ratio, and the solid-to-fluid thermal conductivity ratio over wide ranges with the Prandtl number fixed at 0.7. Results are presented for the variation of several quantities of interest such as the local Nusselt numbers on the inner and outer boundaries, the axial variation of the centerline and interface temperatures, maximum solid, average solid and average interface temperature variations with Grashof number, and the average Nusselt number variation for the inner and outer boundaries with Grashof number. The average Nusselt number from the conjugate analysis is found to be between the Nusselt numbers of the isothermal and the isoflux cases. The average Nusselt numbers on the inner and outer boundaries show an increasing trend with the Grashof number. Correlations are presented for the Nusselt number and the dimensionless temperatures of interest in terms of the parameters of the problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An oscillatory flow of a viscous incompressible fluid in an elastic tube of variable cross section has been investigated at low Reynolds number. The equations governing, the flow are derived under the assumption that the variation of the cross-section is slow in the axial direction for a tethered tube. The problem is then reduced to that of solving for the excess pressure from a second order ordinary differential equation with complex valued Bessel functions as the coefficients. This equation has been solved numerically for geometries of physiological interest and a comparison is made with some of the known theoretical and experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MANY TRANSPORprTo cesses occur in nature and in industrial applications in which the transfer of heat is governed by the process of natural convection. Natural convection arises in fluids when the temperature changes cause density variations leading to buoyancy forces. An excellent review of natural convection flows has been given by Ede [I]. Recently, Minkowycz and Sparrow [2, 31, Cebeci [4], and Aziz and Na [S] have studied the steady, laminar, incompressible, natural convection flow over a vertical cylinder using a local nonsimilarity method, a finite-difference scheme, and an improved perturbation method, respectively. However, they did not take into account the effect ofaxial heat conduction for small Prandtl number. It is known that the axial heat conductioneffect becomesimportant for low-Prandtl-number fluids such as a liquid metal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on free convection heat transfer to water and mercury are collected using a test rig in vertical annuli of three radii ratios, the walls of which are maintained at uniform temperatures. A theoretical analysis of the boundary layer equations has been attempted using local similarity transformation and double boundary layer approach. Correlations derived from the present theoretical analysis are compared with the analysis and the experimental data available in literature for non-metallic fluids and also with the present experimental data on water and mercury. Generalised correlations are set up for expressing the ratio of heat transferred by convection to the heat transferred by pure conduction and Nusselt's number, in terms of Grashof, Rayleigh and Prandtl numbers, based on the theoretical analysis and the present data on mercury and water. The present generalised correlations agree with the reported and present data for non-metallic fluids and liquid metals with an average deviation of 9% and maximum deviation of ± 13.7%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solidification processes are complex in nature, involving multiple phases and several length scales. The properties of solidified products are dictated by the microstructure, the mactostructure, and various defects present in the casting. These, in turn, are governed by the multiphase transport phenomena Occurring at different length scales. In order to control and improve the quality of cast products, it is important to have a thorough understanding of various physical and physicochemical phenomena Occurring at various length scales. preferably through predictive models and controlled experiments. In this context, the modeling of transport phenomena during alloy solidification has evolved over the last few decades due to the complex multiscale nature of the problem. Despite this, a model accounting for all the important length scales directly is computationally prohibitive. Thus, in the past, single-phase continuum models have often been employed with respect to a single length scale to model solidification processing. However, continuous development in understanding the physics of solidification at various length scales oil one hand and the phenomenal growth of computational power oil the other have allowed researchers to use increasingly complex multiphase/multiscale models in recent. times. These models have allowed greater understanding of the coupled micro/macro nature of the process and have made it possible to predict solute segregation and microstructure evolution at different length scales. In this paper, a brief overview of the current status of modeling of convection and macrosegregation in alloy solidification processing is presented.