227 resultados para Organic products
Resumo:
Potassamide induced in situ alkylation of 1-alkyl- 4-cyano-3-methoxy-5,6-dihydroisoquinolines (2a & 2b) with alkyl iodides (CH3I, CH3CH2I & cyclohexyl iodide) gave the 5-alkyl- and 5,9-dialkyl-5,6-dihydroisoquinolines (4–ad & 3a–e), isoquinoline derivatives, (5a–b) and diastereomeric mixture of 4- alkyl-1,2,3,4-tetrahydroisoquinolin-3(2H)-ones (6a–e & 6′a–e). Structures were assigned on the basis of spectral data [Mass, 1H & 13C NMR, 2D NOESY & HC-COLOC]. Amide induced in situ alkylation of compounds 3a and 4a with CH3I gave in almost quantitative yield the dimethylated compounds 3d and 3a respectively. While KNH2/liq.NH3 methylation of 1,2- dihydroisoquinoline, 1 with CH3I gave the mixture of compounds, 6a & 6′a and the isoquinoline derivative 5a, NaH/benzene reaction of 1 with CH3I gave exclusively 5a. N-methylation of the mixture of compounds 6a & 6′a with NaH/CH3I gave the methylated derivatives, 7 & 8. A suitable mechanism has been proposed for the formation of products.
Resumo:
A mechanism involving the intermediacy of nitrene 5, formed from the oxime of spironaphthalenone 1 by acid catalysed dehydration, has been proposed to explain the formation of pyrrolotropones/pyrrolo esters from spironaphthalenones. The initially formed nitrene rearranges to the isopyrrole 6, which either undergoes sigmatropic migration to the pyrrolotropone 2 or adds alcohol to form the pyrrolo ester depending on substitution at 1′ position. The isopyrrole intermediate 6 has been trapped as a Diels-Alder adduct 8.
Resumo:
We present a simple template-free method for the synthesis of interconnected hierarchical porous palladium nanostructures by controlling the aggregation of nanoparticles in organic media. The interaction between the nanoparticles is tuned by varying the dielectric constant of the medium consistent with DLVO calculations. The reaction products range from discrete nanoparticles to compact porous clusters with large specific surface areas. The nanoclusters exhibit hierarchical porosity and are found to exhibit excellent activity towards the reduction of 4-nitrophenol into 4-aminophenol and hydrogen oxidation. The method opens up possibilities for synthesizing porous clusters of other functional inorganics in organic media.
Resumo:
Potassamide induced in situ benzylation of 1-alkyl-4-cyano-3-methoxy-5,6-dihydroisoquinolines (1a-b) with benzyl iodide gave the 5-benzyl-, 5,9-dibenzyl- and 4,4-dibenzyl-5,6-dihydroisoquinolines (9a-b, 8a-b and 10a-b), isoquinoline derivatives (4a-b) and diastereomeric mixture of 4-benzyl-1,2,3,4-tetrahydroisoquinolin-3(2H)-ones (11a-b & 11'a-b). Structures were assigned on the basis of spectral data [Mass, H-1 & C-13 NMR, 2D NOESY]. A few reactions carried out to transform the diastereomeric mixture of compounds 11a and 11's to the spirobenzylisoquinoline system 7a isomeric with naturally occurring ochotensane system ga are discussed.
Resumo:
Synthetic studies directed towards allo-cedrane based, tashironin sibling natural products, involving some deft functional group manipulations on a preformed tetracyclic scaffold, are delineated. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A common synthetic approach to the recently reported sesquiterpene kelsoene 1 and the tetraterpene poduran 5, bearing a novel tricyclo[6.2.0.0(2,6)]decane framework, from commercially available 1,5-COD and leading to the first construction of the carbocyclic core present in these natural products is delineated.
Resumo:
A concise approach of general utility toward mono- and di-geranylated PPAP frameworks employing `reconstructive aldol cyclization' as the key step is delineated. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Stereo- and enantioselective syntheses of (+)-harveynone and (-)-asperpentyn are reported. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A concise stereo- and enantioselective approach to seco-prezizaane sesquiterpenoids, leading to the acquisition of two bicyclic fragments, is delineated. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Sequential transformation in a family of metal-organic framework compounds has been investigated employing both a solid-state as well as a solution mediated route. The compounds, cobalt oxy-bis(benzoate) and manganese oxybis(benzoate) having a two-dimensional structure, were reacted with bipyridine forming cobalt oxy-bis(benzoate)-4,4'-bipyridine and manganese oxy-bis(benzoate)-4,4'-bipyridine, respectively. The bipyridine containing compounds appear to form sequentially through stable intermediates. For the cobalt system, the transformation from a two-dimensional compound, Co(H2O)(2)(OBA)] (OBA = 4,4'-oxy-bis(benzoate)), I, to two different three-dimensional compounds, Co(bpy)(OBA)]center dot bpy, II, (bpy = 4,4'-bipyridine) and Co(bpy)(0.5)(OBA)], III, and reversibility between II and III have been investigated. In the manganese system, transformation from a two-dimensional compound, Mn(H2O)(2)(OBA)], Ia, to two different three-dimensional compounds, Mn (bpy)(OBA)]center dot bpy, Ha and Ha to Mn(bpy)(0.5)(OBA)], Ilia, has been investigated. It has also been possible to identify intermediate products during these transformation reactions. The possible pathways for the formation of the compounds were postulated.
Resumo:
The efficient deprotection of several acetals, dithioacetals, and tetrahydropyranyl (THP) ethers under ambient conditions, using chloral hydrate in hexane, is described. Excellent yields were realized for a wide range of both aliphatic and aromatic substrates. The method is characterized by mild conditions (room temperatures or below), simple workup, and the ready availability of chloral hydrate. High chemoselectivity was also observed in the deprotection, acetonides, esters, and amides being unaffected under the reaction conditions. Products were generally purified chromatographically and identified spectrally. These results constitute a novel addition to current methodology involving a widely employed deprotection tactic in organic synthesis. It seems likely that the mechanism of the reaction involves adsorption of the substrate on the surface of the sparingly soluble chloral hydrate.