28 resultados para Optimization. Semiarid. Management. Performance Indicators


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The random early detection (RED) technique has seen a lot of research over the years. However, the functional relationship between RED performance and its parameters viz,, queue weight (omega(q)), marking probability (max(p)), minimum threshold (min(th)) and maximum threshold (max(th)) is not analytically availa ble. In this paper, we formulate a probabilistic constrained optimization problem by assuming a nonlinear relationship between the RED average queue length and its parameters. This problem involves all the RED parameters as the variables of the optimization problem. We use the barrier and the penalty function approaches for its Solution. However (as above), the exact functional relationship between the barrier and penalty objective functions and the optimization variable is not known, but noisy samples of these are available for different parameter values. Thus, for obtaining the gradient and Hessian of the objective, we use certain recently developed simultaneous perturbation stochastic approximation (SPSA) based estimates of these. We propose two four-timescale stochastic approximation algorithms based oil certain modified second-order SPSA updates for finding the optimum RED parameters. We present the results of detailed simulation experiments conducted over different network topologies and network/traffic conditions/settings, comparing the performance of Our algorithms with variants of RED and a few other well known adaptive queue management (AQM) techniques discussed in the literature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the modern business environment, meeting due dates and avoiding delay penalties are very important goals that can be accomplished by minimizing total weighted tardiness. We consider a scheduling problem in a system of parallel processors with the objective of minimizing total weighted tardiness. Our aim in the present work is to develop an efficient algorithm for solving the parallel processor problem as compared to the available heuristics in the literature and we propose the ant colony optimization approach for this problem. An extensive experimentation is conducted to evaluate the performance of the ACO approach on different problem sizes with the varied tardiness factors. Our experimentation shows that the proposed ant colony optimization algorithm is giving promising results compared to the best of the available heuristics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In our earlier work ([1]) we proposed WLAN Manager (or WM) a centralised controller for QoS management of infrastructure WLANs based on the IEEE 802.11 DCF standards. The WM approach is based on queueing and scheduling packets in a device that sits between all traffic flowing between the APs and the wireline LAN, requires no changes to the AP or the STAs, and can be viewed as implementing a "Split-MAC" architecture. The objectives of WM were to manage various TCP performance related issues (such as the throughput "anomaly" when STAs associate with an AP with mixed PHY rates, and upload-download unfairness induced by finite AP buffers), and also to serve as the controller for VoIP admission control and handovers, and for other QoS management measures. In this paper we report our experiences in implementing the proposals in [1]: the insights gained, new control techniques developed, and the effectiveness of the WM approach in managing TCP performance in an infrastructure WLAN. We report results from a hybrid experiment where a physical WM manages actual TCP controlled packet flows between a server and clients, with the WLAN being simulated, and also from a small physical testbed with an actual AP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The optimization of a photovoltaic pumping system based on an induction motor driven pump that is powered by a solar array is presented in this paper. The motor-pump subsystem is analyzed from the point of view of optimizing the power requirement of the induction motor, which has led to an optimum u-f relationship useful in controlling the motor. The complete pumping system is implemented using a dc-dc converter, a three-phase inverter, and an induction motor-pump set. The dc-dc converter is used as a power conditioner and its duty cycle is controlled so as to match the load to the array. A microprocessor-based controller is used to carry out the load-matching.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Results of performance measurement of a small cooling capacity laboratory model of an adsorption refrigeration system for thermal management of electronics are compiled. This adsorption cooler was built with activated carbon as the adsorbent and HFC 134a as the refrigerant to produce a cooling capacity under 5 W using waste heat up to 90 degrees C. The thermal compression process is obtained from an ensemble of four solid sorption compressors. Parametric study was conducted with cycle times of 16 and 20 min, heat source temperatures from 73 to 87 degrees C and cooling loads from 3 to 4.9W. Overall system performance is analyzed using two indicators, namely, cooling effectiveness and normalized exergetic efficiency. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ground management problems are typically solved by the simulation-optimization approach where complex numerical models are used to simulate the groundwater flow and/or contamination transport. These numerical models take a lot of time to solve the management problems and hence become computationally expensive. In this study, Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) models were developed and coupled for the management of groundwater of Dore river basin in France. The Analytic Element Method (AEM) based flow model was developed and used to generate the dataset for the training and testing of the ANN model. This developed ANN-PSO model was applied to minimize the pumping cost of the wells, including cost of the pipe line. The discharge and location of the pumping wells were taken as the decision variable and the ANN-PSO model was applied to find out the optimal location of the wells. The results of the ANN-PSO model are found similar to the results obtained by AEM-PSO model. The results show that the ANN model can reduce the computational burden significantly as it is able to analyze different scenarios, and the ANN-PSO model is capable of identifying the optimal location of wells efficiently.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a centralized integrated approach for: 1) enhancing the performance of an IEEE 802.11 infrastructure wireless local area network (WLAN), and 2) managing the access link that connects the WLAN to the Internet. Our approach, which is implemented on a standard Linux platform, and which we call ADvanced Wi-fi Internet Service EnhanceR (ADWISER), is an extension of our previous system WLAN Manager (WM). ADWISER addresses several infrastructure WLAN performance anomalies such as mixed-rate inefficiency, unfair medium sharing between simultaneous TCP uploads and downloads, and inefficient utilization of the Internet access bandwidth when Internet transfers compete with LAN-WLAN transfers, etc. The approach is via centralized queueing and scheduling, using a novel, configurable, cascaded packet queueing and scheduling architecture, with an adaptive service rate. In this paper, we describe the design of ADWISER and report results of extensive experimentation conducted on a hybrid testbed consisting of real end-systems and an emulated WLAN on Qualnet. We also present results from a physical testbed consisting of one access point (AP) and a few end-systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multi-GPU machines are being increasingly used in high-performance computing. Each GPU in such a machine has its own memory and does not share the address space either with the host CPU or other GPUs. Hence, applications utilizing multiple GPUs have to manually allocate and manage data on each GPU. Existing works that propose to automate data allocations for GPUs have limitations and inefficiencies in terms of allocation sizes, exploiting reuse, transfer costs, and scalability. We propose a scalable and fully automatic data allocation and buffer management scheme for affine loop nests on multi-GPU machines. We call it the Bounding-Box-based Memory Manager (BBMM). BBMM can perform at runtime, during standard set operations like union, intersection, and difference, finding subset and superset relations on hyperrectangular regions of array data (bounding boxes). It uses these operations along with some compiler assistance to identify, allocate, and manage data required by applications in terms of disjoint bounding boxes. This allows it to (1) allocate exactly or nearly as much data as is required by computations running on each GPU, (2) efficiently track buffer allocations and hence maximize data reuse across tiles and minimize data transfer overhead, and (3) and as a result, maximize utilization of the combined memory on multi-GPU machines. BBMM can work with any choice of parallelizing transformations, computation placement, and scheduling schemes, whether static or dynamic. Experiments run on a four-GPU machine with various scientific programs showed that BBMM reduces data allocations on each GPU by up to 75% compared to current allocation schemes, yields performance of at least 88% of manually written code, and allows excellent weak scaling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Groundwater management involves conflicting objectives as maximization of discharge contradicts the criteria of minimum pumping cost and minimum piping cost. In addition, available data contains uncertainties such as market fluctuations, variations in water levels of wells and variations of ground water policies. A fuzzy model is to be evolved to tackle the uncertainties, and a multiobjective optimization is to be conducted to simultaneously satisfy the contradicting objectives. Towards this end, a multiobjective fuzzy optimization model is evolved. To get at the upper and lower bounds of the individual objectives, particle Swarm optimization (PSO) is adopted. The analytic element method (AEM) is employed to obtain the operating potentio metric head. In this study, a multiobjective fuzzy optimization model considering three conflicting objectives is developed using PSO and AEM methods for obtaining a sustainable groundwater management policy. The developed model is applied to a case study, and it is demonstrated that the compromise solution satisfies all the objectives with adequate levels of satisfaction. Sensitivity analysis is carried out by varying the parameters, and it is shown that the effect of any such variation is quite significant. Copyright (c) 2015 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nodes with dynamicity, and management without administrator are key features of mobile ad hoc networks (1VIANETs). Increasing resource requirements of nodes running different applications, scarcity of resources, and node mobility in MANETs are the important issues to be considered in allocation of resources. Moreover, management of limited resources for optimal allocation is a crucial task. In our proposed work we discuss a design of resource allocation protocol and its performance evaluation. The proposed protocol uses both static and mobile agents. The protocol does the distribution and parallelization of message propagation (mobile agent with information) in an efficient way to achieve scalability and speed up message delivery to the nodes in the sectors of the zones of a MANET. The protocol functionality has been simulated using Java Agent Development Environment (JADE) Framework for agent generation, migration and communication. A mobile agent migrates from central resource rich node with message and navigate autonomously in the zone of network until the boundary node. With the performance evaluation, it has been concluded that the proposed protocol consumes much less time to allocate the required resources to the nodes under requirement, utilize less network resources and increase the network scalability. (C) 2015 Elsevier B.V. All rights reserved.