69 resultados para Opticalfiber communication
Resumo:
The stability of scheduled multiaccess communication with random coding and independent decoding of messages is investigated. The number of messages that may be scheduled for simultaneous transmission is limited to a given maximum value, and the channels from transmitters to receiver are quasistatic, flat, and have independent fades. Requests for message transmissions are assumed to arrive according to an i.i.d. arrival process. Then, we show the following: (1) in the limit of large message alphabet size, the stability region has an interference limited information-theoretic capacity interpretation, (2) state-independent scheduling policies achieve this asymptotic stability region, and (3) in the asymptotic limit corresponding to immediate access, the stability region for non-idling scheduling policies is shown to be identical irrespective of received signal powers.
Resumo:
The problem of admission control of packets in communication networks is studied in the continuous time queueing framework under different classes of service and delayed information feedback. We develop and use a variant of a simulation based two timescale simultaneous perturbation stochastic approximation (SPSA) algorithm for finding an optimal feedback policy within the class of threshold type policies. Even though SPSA has originally been designed for continuous parameter optimization, its variant for the discrete parameter case is seen to work well. We give a proof of the hypothesis needed to show convergence of the algorithm on our setting along with a sketch of the convergence analysis. Extensive numerical experiments with the algorithm are illustrated for different parameter specifications. In particular, we study the effect of feedback delays on the system performance.
Resumo:
We develop a multi-class discrete-time processor-sharing queueing model for scheduled message communication over a discrete memoryless degraded broadcast channel. The framework we consider here models both the random message arrivals and the subsequent reliable communication by suitably combining techniques from queueing theory and information theory. Requests for message transmissions are assumed to arrive according to i.i.d. arrival processes. Then, (i) we derive an outer bound to the stability region of message arrival rate vectors achievable by the class of stationary scheduling policies, (ii) we show for any message arrival rate vector that satisfies the outer bound, that there exists a stationary "state-independent" policy that results in a stable system for the corresponding message arrival processes, and (iii) under an asymptotic regime, we show that the stability region of information arrival rate vectors is the information-theoretic capacity region of a degraded broadcast channel.
Resumo:
This paper presents comparative data on the vocal communication of two Asian leaf monkeys, the Nilgiri langur (Presbytis johnii) and South Indian common langur (Presbytis entellus), based on sound recordings and behavioural observations of free-ranging groups. Spectrographical analyses revealed a repertoire of 18 basic patterns for Nilgiri langurs, and 21 basic patterns for common langurs. The repertoires of the two langur species consist of both discretely structured vocal patterns, in which alterations of the physical parameters are restricted to intra-class variation, and those in which structural variations cause intergradation between different sections of the repertoire. Qualitative assessments of group scans indicate that in both species vocal behaviour is characterized by pronounced sex-differences in the use of the different elements of the vocal repertoire. Comparison of data available from different populations of P. entellus suggests population-specific modifications on both structural and behavioural levels. Moreover, characteristic elements of the vocal systems of the two Asian species demonstrate striking similarities to those described for the African black-and-white colobus.
Resumo:
Field observations and spectrographic analyses of sound recordings of South Indian bonnet macaques revealed a vocal repertoire of at least 25 basic patterns. The repertoire consists of well separated sound classes and acoustic categories connected by structural intergradation. Besides structural variations within and between different elements of the repertoire, the vocal system ofMacaca radiata is characterized by regular combinations of particular basic patterns. These combinations occurred not only between calls of similar structure and function but also between calls usually emitted in entirely different social contexts. According to the qualitative analysis, sex-specific asymmetries of the vocal behaviour were less pronounced than age-dependent characteristics. The comparison of clear call vocalizations ofMacaca radiata andM. fuscata revealed significant species-specific differences on the structural and the behavioural level. Evaluations of the structural features of alarm calls of various macaque species imply marked differences between members of thefascicularis group andsinica group on one hand and thesilenus group andarctoides
Resumo:
While plants of a single species emit a diversity of volatile organic compounds (VOCs) to attract or repel interacting organisms, these specific messages may be lost in the midst of the hundreds of VOCs produced by sympatric plants of different species, many of which may have no signal content. Receivers must be able to reduce the babel or noise in these VOCs in order to correctly identify the message. For chemical ecologists faced with vast amounts of data on volatile signatures of plants in different ecological contexts, it is imperative to employ accurate methods of classifying messages, so that suitable bioassays may then be designed to understand message content. We demonstrate the utility of `Random Forests' (RF), a machine-learning algorithm, for the task of classifying volatile signatures and choosing the minimum set of volatiles for accurate discrimination, using datam from sympatric Ficus species as a case study. We demonstrate the advantages of RF over conventional classification methods such as principal component analysis (PCA), as well as data-mining algorithms such as support vector machines (SVM), diagonal linear discriminant analysis (DLDA) and k-nearest neighbour (KNN) analysis. We show why a tree-building method such as RF, which is increasingly being used by the bioinformatics, food technology and medical community, is particularly advantageous for the study of plant communication using volatiles, dealing, as it must, with abundant noise.
Resumo:
We have developed a novel nanoparticle tracking based interface microrheology technique to perform in situ studies on confined complex fluids. To demonstrate the power of this technique, we show, for the first time, how in situ glass formation in polymers confined at air-water interface can be directly probed by monitoring variation of the mean square displacement of embedded nanoparticles as a function of surface density. We have further quantified the appearance of dynamic heterogeneity and hence vitrification in polymethyl methacrylate monolayers above a certain surface density, through the variation of non-Gaussian parameter of the probes. (C) 2010 American Institute of Physics. [doi:10.1063/1.3471584].
Resumo:
A common and practical paradigm in cooperative communication systems is the use of a dynamically selected `best' relay to decode and forward information from a source to a destination. Such systems use two phases - a relay selection phase, in which the system uses transmission time and energy to select the best relay, and a data transmission phase, in which it uses the spatial diversity benefits of selection to transmit data. In this paper, we derive closed-form expressions for the overall throughput and energy consumption, and study the time and energy trade-off between the selection and data transmission phases. To this end, we analyze a baseline non-adaptive system and several adaptive systems that adapt the selection phase, relay transmission power, or transmission time. Our results show that while selection yields significant benefits, the selection phase's time and energy overhead can be significant. In fact, at the optimal point, the selection can be far from perfect, and depends on the number of relays and the mode of adaptation. The results also provide guidelines about the optimal system operating point for different modes of adaptation. The analysis also sheds new insights on the fast splitting-based algorithm considered in this paper for relay selection.
Resumo:
We present the results on the evolution of microscopic dynamics of hybrid nanoparticles and their binary mixtures as a function of temperature and wave vector. We find unexpectedly a nonmonotonic dependence of the structural relaxation time of the nanoparticles as a function of the morphology. In binary mixtures of two of the largest nanoparticles studied, we observe re-entrant vitrification as a function of the volume fraction of the smaller nanoparticle, which is unusual for such high diameter ratio. Possible explanation for the observed behavior is provided. (C) 2010 American Institute of Physics. doi:10.1063/1.3495480]
Resumo:
The enzymes of the family of tRNA synthetases perform their functions with high precision by synchronously recognizing the anticodon region and the aminoacylation region, which are separated by ?70 in space. This precision in function is brought about by establishing good communication paths between the two regions. We have modeled the structure of the complex consisting of Escherichia coli methionyl-tRNA synthetase (MetRS), tRNA, and the activated methionine. Molecular dynamics simulations have been performed on the modeled structure to obtain the equilibrated structure of the complex and the cross-correlations between the residues in MetRS have been evaluated. Furthermore, the network analysis on these simulated structures has been carried out to elucidate the paths of communication between the activation site and the anticodon recognition site. This study has provided the detailed paths of communication, which are consistent with experimental results. Similar studies also have been carried out on the complexes (MetRS + activated methonine) and (MetRS + tRNA) along with ligand-free native enzyme. A comparison of the paths derived from the four simulations clearly has shown that the communication path is strongly correlated and unique to the enzyme complex, which is bound to both the tRNA and the activated methionine. The details of the method of our investigation and the biological implications of the results are presented in this article. The method developed here also could be used to investigate any protein system where the function takes place through long-distance communication.
Resumo:
This paper introduces CSP-like communication mechanisms into Backus’ Functional Programming (FP) systems extended by nondeterministic constructs. Several new functionals are used to describe nondeterminism and communication in programs. The functionals union and restriction are introduced into FP systems to develop a simple algebra of programs with nondeterminism. The behaviour of other functionals proposed in this paper are characterized by the properties of union and restriction. The axiomatic semantics of communication constructs are presented. Examples show that it is possible to reason about a communicating program by first transforming it into a non-communicating program by using the axioms of communication, and then reasoning about the resulting non-communicating version of the program. It is also shown that communicating programs can be developed from non-communicating programs given as specifications by using a transformational approach.
Resumo:
We consider the problem of optimally scheduling a processor executing a multilayer protocol in an intelligent Network Interface Controller (NIC). In particular, we assume a typical LAN environment with class 4 transport service, a connectionless network service, and a class 1 link level protocol. We develop a queuing model for the problem. In the most general case this becomes a cyclic queuing network in which some queues have dedicated servers, and the others have a common schedulable server. We use sample path arguments and Markov decision theory to determine optimal service schedules. The optimal throughputs are compared with those obtained with simple policies. The optimal policy yields upto 25% improvement in some cases. In some other cases, the optimal policy does only slightly better than much simpler policies.