182 resultados para One-dimensional model
Resumo:
Structural and dynamical properties of ethane in one-dimensional channels of AlPO4-5 and carbon nanotube have been investigated at dilute concentration with the help of molecular dynamics simulation. Density distributions and orientational structure of ethane have been analyzed. Repulsive interactions seem to play an important role when ethane is located in the narrow part of the AlPO4-5 channel. In AlPO4-5, parallel orientation is predominant over perpendicular orientation except when ethane is located in the broader part of the channel. Unlike in the case of single-file diffusion, our results in carbon nanotube show that at dilute concentrations the mean squared displacement, mu(2)(t) approximate to t(alpha), alpha = 1.8. The autocorrelation function for the z-component of angular velocity of ethane in space-fixed frame of reference shows a pronounced negative correlation. This is attributed to the restriction in the movement of ethane along the x- and y- directions. It is seen that the ratio of reorientational correlation times does not follow the Debye model for confined ethane but it is closer to the predictions of the Debye model for bulk ethane.
Active Vibration Suppression of One-dimensional Nonlinear Structures Using Optimal Dynamic Inversion
Resumo:
A flexible robot arm can be modeled as an Euler-Bernoulli beam which are infinite degrees of freedom (DOF) system. Proper control is needed to track the desired motion of a robotic arm. The infinite number of DOF of beams are reduced to finite number for controller implementation, which brings in error (due to their distributed nature). Therefore, to represent reality better distributed parameter systems (DPS) should be controlled using the systems partial differential equation (PDE) directly. In this paper, we propose to use a recently developed optimal dynamic inversion technique to design a controller to suppress nonlinear vibration of a beam. The method used in this paper determines control forces directly from the PDE model of the system. The formulation has better practical significance, because it leads to a closed form solution of the controller (hence avoids computational issues).
Resumo:
In arriving at the ideal filter transfer function for an active noise control system in a duct, the effect of the auxiliary sources (generally loudspeakers) on the waves generated by the primary source has invariably been neglected in the existing literature, implying a rigid wall or infinite impedance. The present paper presents a fairly general analysis of a linear one-dimensional noise control system by means of block diagrams and transfer functions. It takes into account the passive as well as active role of a terminal primary source, wall-mounted auxiliary source, open duct radiation impedance, and the effects of mean flow and damping. It is proved that the pressure generated by a source against a load impedance can be looked upon as a sum of two pressure waves, one generated by the source against an anechoic termination and the other by reflecting the rearward wave (incident on the source) off the passive source impedance. Application of this concept is illustrated for both the types of sources. A concise closed-form expression for the ideal filter transfer function is thus derived and discussed. Finally, the dynamics of an adaptive noise control system is discussed briefly, relating its standing-wave variables and transfer functions with those of the progressive-wave model presented here.
Resumo:
The reaction of a tridentate Schiff base ligand HL (2-(3-dimethylaminopropylimino)-methyl]-phenol) with Ni(II) acetate or perchlorate salts in the presence of azide as coligand has led to two new Ni(II) complexes of formulas Ni3L2(OAc)(2)(mu(1,1)-N-3)(2)(H2O)(2)]center dot 2H(2)O (1) and Ni2L2(mu(1,1)-N-3) (mu(1,3)-N-3)](n)(2). Single crystal X-ray structures show that complex 1 is a linear trinuclear Ni(II) compound containing a mu(2)-phenwddo, an end-on (EO) azido and a syn-syn acetato bridge between the terminal and the central Ni(II) ions. Complex 2 can be viewed as a one-dimensional (1D) chain in which the triply bridged (di-mu(2)-phenoxido and EO azido) dimeric Ni-2 units are linked to each other in a zigzag pattern by a single end-to-end (EE) azido bridge. Variable-temperature magnetic susceptibility studies indicate the presence of moderate ferromagnetic exchange coupling in complex 1 with J value of 16.51(6) cm(-1). The magnetic behavior of 2 can be fitted in an alternating ferro- and antiferromagnetic model J(FM) = +34.2(2.8) cm(-1) and J(AF) = -21.6(1.1) cm(-1)] corresponding to the triple bridged dinuclear core and EE azido bridge respectively. Density functional theory (DFT) calculations were performed to corroborate the magnetic results of 1 and 2. The contributions of the different bridges toward magnetic interactions in both compounds have also been calculated.
Resumo:
Recently it has been shown that the fidelity of the ground state of a quantum many-body system can be used todetect its quantum critical points (QCPs). If g denotes the parameter in the Hamiltonian with respect to which the fidelity is computed, we find that for one-dimensional models with large but finite size, the fidelity susceptibility chi(F) can detect a QCP provided that the correlation length exponent satisfies nu < 2. We then show that chi(F) can be used to locate a QCP even if nu >= 2 if we introduce boundary conditions labeled by a twist angle N theta, where N is the system size. If the QCP lies at g = 0, we find that if N is kept constant, chi(F) has a scaling form given by chi(F) similar to theta(-2/nu) f (g/theta(1/nu)) if theta << 2 pi/N. We illustrate this both in a tight-binding model of fermions with a spatially varying chemical potential with amplitude h and period 2q in which nu = q, and in a XY spin-1/2 chain in which nu = 2. Finally we show that when q is very large, the model has two additional QCPs at h = +/- 2 which cannot be detected by studying the energy spectrum but are clearly detected by chi(F). The peak value and width of chi(F) seem to scale as nontrivial powers of q at these QCPs. We argue that these QCPs mark a transition between extended and localized states at the Fermi energy. DOI: 10.1103/PhysRevB.86.245424
Resumo:
Similar quantum phase diagrams and transitions are found for three classes of one-dimensional models with equally spaced sites, singlet ground states (GS), inversion symmetry at sites and a bond order wave (BOW) phase in some sectors. The models are frustrated spin-1/2 chains with variable range exchange, half-filled Hubbard models with spin-independent interactions and modified Hubbard models with site energies for describing organic charge transfer salts. In some range of parameters, the models have a first order quantum transition at which the GS expectation value of the sublattice spin < S-A(2)> of odd or even-numbered sites is discontinuous. There is an intermediate BOW phase for other model parameters that lead to two continuous quantum transitions with continuous < S-A(2)>. Exact diagonalization of finite systems and symmetry arguments provide a unified picture of familiar 1D models that have appeared separately in widely different contexts.
Resumo:
Similar quantum phase diagrams and transitions are found for three classes of one-dimensional models with equally spaced sites, singlet ground states (GS), inversion symmetry at sites and a bond order wave (BOW) phase in some sectors. The models are frustrated spin-1/2 chains with variable range exchange, half-filled Hubbard models with spin-independent interactions and modified Hubbard models with site energies for describing organic charge transfer salts. In some range of parameters, the models have a first order quantum transition at which the GS expectation value of the sublattice spin < S-A(2)> of odd or even-numbered sites is discontinuous. There is an intermediate BOW phase for other model parameters that lead to two continuous quantum transitions with continuous < S-A(2)>. Exact diagonalization of finite systems and symmetry arguments provide a unified picture of familiar 1D models that have appeared separately in widely different contexts.
Resumo:
Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess `additional' integrals of motion as well, so as to enhance the analogy with quantum integrable systems. We answer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precise sense, motivate our construction. We note that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order. We show that despite the infinite range hopping, all states but one are localized. We also study the conservation laws for the disorder free Aubry-Andre model, where the states are either localized or extended, depending on the strength of a coupling constant. We formulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry-Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Finally, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.
Resumo:
A new theory of shock dynamics has been developed in the form of a finite number of compatibility conditions along shock rays. It has been used to study the growth or decay of shock strength for accelerating or decelerating piston starting with a nonzero piston velocity. The results show good agreement with those obtained by Harten's high resolution TVD scheme.
Resumo:
We report the growth of one-dimensional ZnO nanostructures with different morphologies such as nanoneedles, nanorods, nanobelts from Zn powder/granule. The growth process is different from the conventional vapor-solid mechanism. The advantage of this method is that neither a catalyst nor any gas flow is required for the synthesis of nanostructures. Depending upon the Zn powder or Zn granules as the starting material different nanostructures have been synthesized which demonstrates the versatility of the technique.
Resumo:
A novel method is proposed to treat the problem of the random resistance of a strictly one-dimensional conductor with static disorder. It is suggested, for the probability distribution of the transfer matrix of the conductor, the distribution of maximum information-entropy, constrained by the following physical requirements: 1) flux conservation, 2) time-reversal invariance and 3) scaling, with the length of the conductor, of the two lowest cumulants of ζ, where = sh2ζ. The preliminary results discussed in the text are in qualitative agreement with those obtained by sophisticated microscopic theories.
Resumo:
Examination of the symmetric Hantzsch 1,4-dihydropyridine ester derivatives of the prototypical nifedipine molecule indicates the tendency of this class of molecule to form a common packing motif. Crystal structure analysis of 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylic diesters and analogs reveals that they form extended chains, characterized as the C(6) packing motif, via intermolecular (amine) N-H...O=C (C3,C5 carbonyl) hydrogen bonds. In addition, all the prepared derivatives also satisfy the basic structural requirements for their high binding efficiency to the receptor. The reproducible C(6) packing motif observed among these compounds has a use in the design of solid-state materials.
Resumo:
The metastable vacancy ordered phases observed in aluminium transition metal alloys on rapid solidification or vapour deposition can be considered as a periodic arrangement of a truncated quasiperiodic string based on the Fibonacci sequence along the left angle bracket111right-pointing angle bracket stacking direction of the original CsCl cell. Using the projection formalism developed in the context of quasicrystals, the diffraction patterns of the vacancy ordered phases are calculated for both commensurate and incommensurate projection from a periodic cubic cell in four dimensions. These are compared with experimentally observed patterns. It is shown that at increasingly longer periodicity the patterns from commensurate crystals become indistinguishable from the truly quasiperiodic one. It is suggested that there is a strong link between vacancy ordered phases and quasicrystals.
Resumo:
Following an invariant-imbedding approach, we obtain analytical expressions for the ensemble-averaged resistance (ρ) and its Sinai’s fluctuations for a one-dimensional disordered conductor in the presence of a finite electric field F. The mean resistance shows a crossover from the exponential to the power-law length dependence with increasing field strength in agreement with known numerical results. More importantly, unlike the zero-field case the resistance distribution saturates to a Poissonian-limiting form proportional to A‖F‖exp(-A‖F‖ρ) for large sample lengths, where A is constant.
Resumo:
Many one-dimensional conductors show pronounced nonlinear electrical conduction. Some of them show very interesting electrical switching from a low conducting state to a high conducting state. Such electrical switching is often associated with memory. These are discussed with particular emphasis on charge transfer complexestmbine-tcnq, tmpd-tcnq, Cs2(tcnq)3,tea-(tcnq) 2 ando-tolidine-iodine.