17 resultados para Object Permanence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perceive objects as containing a variety of attributes: local features, relations between features, internal details, and global properties. But we know little about how they combine. Here, we report a remarkably simple additive rule that governs how these diverse object attributes combine in vision. The perceived dissimilarity between two objects was accurately explained as a sum of (a) spatially tuned local contour-matching processes modulated by part decomposition; (b) differences in internal details, such as texture; (c) differences in emergent attributes, such as symmetry; and (d) differences in global properties, such as orientation or overall configuration of parts. Our results elucidate an enduring question in object vision by showing that the whole object is not a sum of its parts but a sum of its many attributes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salient object detection has become an important task in many image processing applications. The existing approaches exploit background prior and contrast prior to attain state of the art results. In this paper, instead of using background cues, we estimate the foreground regions in an image using objectness proposals and utilize it to obtain smooth and accurate saliency maps. We propose a novel saliency measure called `foreground connectivity' which determines how tightly a pixel or a region is connected to the estimated foreground. We use the values assigned by this measure as foreground weights and integrate these in an optimization framework to obtain the final saliency maps. We extensively evaluate the proposed approach on two benchmark databases and demonstrate that the results obtained are better than the existing state of the art approaches.