19 resultados para OXALATES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxalato oxovanadium (IV) complexes with neutral ligand molecules like dimethyl sulphoxide (DMSO) and antipyrine (Apy), VOOX·2DMSO and VOOX·2Apy and complex oxalates of oxovanadium (IV)-(NH4)2[VOOX2]·2H2O, (NH4)2[(VO)2OX3]·6H2O and (NH4)2[(VO)2OX3] have been prepared and characterized by different methods. In the divanadyl complexes, V-V and V-O-V-O types of bonding are shown to be absent by magnetic and spectral data and a bridged oxalato group co-ordinated to the two vanadium atoms is shown to be present, in addition to the usual bidentate oxalate groups. The possible stereochemical arrangements are indicated for the complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ORANGE red and amorphous peroxy-titanium complexes of oxalic, malonic and maleic acids1-3, when vacuum-dried, have co-ordinated water molecules firmly bonded to the central titanium atom as shown in formula (I). The peroxy-oxygen from these compounds is slowly lost even at room temperature because of the strained peroxy-group3,4. The compounds, when kept at 95°-100°C. for about three days, give deperoxygenated compounds of the type (II). However, a sample of peroxy-titanium oxalate sealed in a glass tube lost all its peroxy-oxygen in about four years and gave a white crystalline basic oxalate (II). The amorphous nature of the compounds may be due to random hydrogen bonding in the complexes. The crystallinity observed in one of the deperoxygenated titanyl oxalates may be due to the rearrangement of the molecules during ageing for more than four years. The infra-red absorption of these compounds was studied to find out the effect of co-ordination and hydrogen bonding on the infra-red bands of the free water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The simple dialkyl oxalates are generally liquids at room temperature except for dimethyl and di-tert-butyl oxalate which melt at 327 and 343 K. The crystal structures of diethyl, di-iso-propyl, di-n-butyl, di-tert-butyl and methyl ethyl oxalates were determined. The liquid esters were crystallized using the cryocrystallization technique. A comparison of the intermolecular interactions and packing features in these crystal structures was carried out. The crystal structure of dimethyl oxalate was redetermined at various temperatures. The other compounds were also studied at several temperatures in order to assess the attractive nature of the hydrogen bonds therein. A number of moderate to well defined C-H center dot center dot center dot O interactions account for the higher melting points of the two solid esters. Additionally, a diminished entropic contribution Delta S(m) in di-tert-butyl oxalate possibly increases the melting point of this compound further.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dialkyl succinates show a pattern of alternating behavior in their melting points, as the number of C atoms in the alkane side chain increases, unlike in the dialkyl oxalates Joseph et al. (2011). Acta Cryst. B67, 525-534]. Dialkyl succinates with odd numbers of C atoms in the alkyl side chain show higher melting points than the immediately adjacent analogues with even numbers. The crystal structures and their molecular packing have been analyzed for a series of dialkyl succinates with 1 - 4 C atoms in the alkyl side chain. The energy difference (Delta E) between the optimized and observed molecular conformations, density, Kitaigorodskii packing index (KPI) and C-H center dot center dot center dot O interactions are considered to rationalize this behavior. In contrast to the dialkyl oxalates where a larger number of moderately strong C-H center dot center dot center dot O interactions were characteristic of oxalates with elevated melting points, here the molecular packing and the density play a major role in raising the melting point. On moving from oxalate to succinate esters the introduction of the C2 spacer adds two activated H atoms to the asymmetric unit, resulting in the formation of stronger C-H center dot center dot center dot O hydrogen bonds in all succinates. As a result the crystallinity of long-chain alkyl substituted esters improves enormously in the presence of hydrogen bonds from activated donors.