225 resultados para Numerical Schemes
Resumo:
A pseudo-dynamical approach for a class of inverse problems involving static measurements is proposed and explored. Following linearization of the minimizing functional associated with the underlying optimization problem, the new strategy results in a system of linearized ordinary differential equations (ODEs) whose steady-state solutions yield the desired reconstruction. We consider some explicit and implicit schemes for integrating the ODEs and thus establish a deterministic reconstruction strategy without an explicit use of regularization. A stochastic reconstruction strategy is then developed making use of an ensemble Kalman filter wherein these ODEs serve as the measurement model. Finally, we assess the numerical efficacy of the developed tools against a few linear and nonlinear inverse problems of engineering interest.
Resumo:
Error estimates for the error reproducing kernel method (ERKM) are provided. The ERKM is a mesh-free functional approximation scheme [A. Shaw, D. Roy, A NURBS-based error reproducing kernel method with applications in solid mechanics, Computational Mechanics (2006), to appear (available online)], wherein a targeted function and its derivatives are first approximated via non-uniform rational B-splines (NURBS) basis function. Errors in the NURBS approximation are then reproduced via a family of non-NURBS basis functions, constructed using a polynomial reproduction condition, and added to the NURBS approximation of the function obtained in the first step. In addition to the derivation of error estimates, convergence studies are undertaken for a couple of test boundary value problems with known exact solutions. The ERKM is next applied to a one-dimensional Burgers equation where, time evolution leads to a breakdown of the continuous solution and the appearance of a shock. Many available mesh-free schemes appear to be unable to capture this shock without numerical instability. However, given that any desired order of continuity is achievable through NURBS approximations, the ERKM can even accurately approximate functions with discontinuous derivatives. Moreover, due to the variation diminishing property of NURBS, it has advantages in representing sharp changes in gradients. This paper is focused on demonstrating this ability of ERKM via some numerical examples. Comparisons of some of the results with those via the standard form of the reproducing kernel particle method (RKPM) demonstrate the relative numerical advantages and accuracy of the ERKM.
Resumo:
The electric field in certain electrostatic devices can be modeled by a grounded plate electrode affected by a corona discharge generated by a series of parallel wires connected to a DC high-voltage supply. The system of differential equations that describe the behaviour (i.e., charging and motion) of the conductive particle in such an electric field has been numerically solved, using several simplifying assumptions. Thus, it was possible to investigate the effect of various electrical and mechanical factors on the trajectories of conductive particles. This model has been employed to study the behaviour of coalparticles in fly-ash corona separators.
Resumo:
An analytical-numerical procedure for obtaining stress intensity factor solutions for an arbitrarily oriented crack in a long, thin circular cylindrical shell is presented. The method of analysis involves obtaining a series solution to the governing shell equation in terms of Mathieu and modified Mathieu functions by the method of separation of variables and satisfying the crack surface boundary conditions numerically using collocation. The solution is then transformed from elliptic coordinates to polar coordinates with crack tip as the origin through a Taylor series expansion and membrane and bending stress intensity factors are computed. Numerical results are presented and discussed for the pressure loading case.
Resumo:
The objective of this work is to study the growth of a cylindrical void ahead of a notch tip in ductile FCC single crystals under mode I, plane strain, small scale yielding (SSY) conditions. To this end, finite element simulations are performed within crystal plasticity framework neglecting elastic anisotropy. Attention is focussed on the effects of crystal hardening, ratio of void diameter to spacing from the notch and crystal orientation on plastic flow localization in the ligament connecting the notch and the void as well as their growth. The results show strong interaction between shear bands emanating from the notch and angular sectors of single slip forming around the void leading to intense plastic strain development in the ligament. Further, the ductile fracture processes are retarded by increase in hardening of the single crystal and decrease in ratio of void diameter to spacing from the notch. Also, a strong influence of crystal orientation on near-tip void growth and plastic slip band development is observed. Finally, the synergistic, cooperative growth of multiple voids ahead of the notch tip is examined.
Resumo:
A strong-coupling expansion for the Green's functions, self-energies, and correlation functions of the Bose-Hubbard model is developed. We illustrate the general formalism, which includes all possible (normal-phase) inhomogeneous effects in the formalism, such as disorder or a trap potential, as well as effects of thermal excitations. The expansion is then employed to calculate the momentum distribution of the bosons in the Mott phase for an infinite homogeneous periodic system at zero temperature through third order in the hopping. By using scaling theory for the critical behavior at zero momentum and at the critical value of the hopping for the Mott insulator–to–superfluid transition along with a generalization of the random-phase-approximation-like form for the momentum distribution, we are able to extrapolate the series to infinite order and produce very accurate quantitative results for the momentum distribution in a simple functional form for one, two, and three dimensions. The accuracy is better in higher dimensions and is on the order of a few percent relative error everywhere except close to the critical value of the hopping divided by the on-site repulsion. In addition, we find simple phenomenological expressions for the Mott-phase lobes in two and three dimensions which are much more accurate than the truncated strong-coupling expansions and any other analytic approximation we are aware of. The strong-coupling expansions and scaling-theory results are benchmarked against numerically exact quantum Monte Carlo simulations in two and three dimensions and against density-matrix renormalization-group calculations in one dimension. These analytic expressions will be useful for quick comparison of experimental results to theory and in many cases can bypass the need for expensive numerical simulations.
Resumo:
A numerical study on columnar-to-equiaxed transition (CET) during directional solidification of binary alloys is presented using a macroscopic solidification model. The position of CET is predicted numerically using a critical cooling rate criterion reported in literature. The macroscopic solidification model takes into account movement of solid phase due to buoyancy, and drag effect on the moving solid phase because of fluid motion. The model is applied to simulate the solidification process for binary alloys (Sn-Pb) and to estimate solidification parameters such as position of the liquidus, velocity of the liquidus isotherm, temperature gradient ahead of the liquidus, and cooling rate at the liquidus. Solidification phenomena under two cooling configurations are studied: one without melt convection and the other involvin thermosolutal convection. The numerically predicted positions of CET compare well with those of experiments reported in literature. Melt convection results in higher cooling rate, higher liquidus isotherm velocities, and stimulation of occurrence of CET in comparison to the nonconvecting case. The movement of solid phase aids further the process of CET. With a fixed solid phase, the occurrence of CET based on the same critical cooling rate is delayed and it occurs at a greater distance from the chill.
Resumo:
The short duration of the Doppler signal and noise content in it necessitate a validation scheme to be incorporated in the electronic processor used for frequency measurement, There are several different validation schemes that can be employed in period timing devices. A detailed study of the influence of these validation schemes on the measured frequency has been reported here. These studies were carried out by using a combination of a fast A/D converter and computer. Doppler bursts obtained from an air flow were digitised and stored on magnetic discs. Suitable computer programs were then used to simulate the performance of period timing devices with different validation schemes and the frequency of the stored bursts were evaluated. It is found that best results are obtained when the validation scheme enables frequency measurement to be made over a large number of cycles within the burst.
Resumo:
Numerically discretized dynamic optimization problems having active inequality and equality path constraints that along with the dynamics induce locally high index differential algebraic equations often cause the optimizer to fail in convergence or to produce degraded control solutions. In many applications, regularization of the numerically discretized problem in direct transcription schemes by perturbing the high index path constraints helps the optimizer to converge to usefulm control solutions. For complex engineering problems with many constraints it is often difficult to find effective nondegenerat perturbations that produce useful solutions in some neighborhood of the correct solution. In this paper we describe a numerical discretization that regularizes the numerically consistent discretized dynamics and does not perturb the path constraints. For all values of the regularization parameter the discretization remains numerically consistent with the dynamics and the path constraints specified in the, original problem. The regularization is quanti. able in terms of time step size in the mesh and the regularization parameter. For full regularized systems the scheme converges linearly in time step size.The method is illustrated with examples.
Resumo:
It is well known that the notions of normal forms and acyclicity capture many practical desirable properties for database schemes. The basic schema design problem is to develop design methodologies that strive toward these ideals. The usual approach is to first normalize the database scheme as far as possible. If the resulting scheme is cyclic, then one tries to transform it into an acyclic scheme. In this paper, we argue in favor of carrying out these two phases of design concurrently. In order to do this efficiently, we need to be able to incrementally analyze the acyclicity status of a database scheme as it is being designed. To this end, we propose the formalism of "binary decompositions". Using this, we characterize design sequences that exactly generate theta-acyclic schemes, for theta = agr,beta. We then show how our results can be put to use in database design. Finally, we also show that our formalism above can be effectively used as a proof tool in dependency theory. We demonstrate its power by showing that it leads to a significant simplification of the proofs of some previous results connecting sets of multivalued dependencies and acyclic join dependencies.
Resumo:
We present a detailed direct numerical simulation (DNS) of the two-dimensional Navier-Stokes equation with the incompressibility constraint and air-drag-induced Ekman friction; our DNS has been designed to investigate the combined effects of walls and such a friction on turbulence in forced thin films. We concentrate on the forward-cascade regime and show how to extract the isotropic parts of velocity and vorticity structure functions and hence the ratios of multiscaling exponents. We find that velocity structure functions display simple scaling, whereas their vorticity counterparts show multiscaling, and the probability distribution function of the Weiss parameter 3, which distinguishes between regions with centers and saddles, is in quantitative agreement with experiments.
Resumo:
The surface tension gradient driven flow that occurs during laser melting has been studied. The vorticity-streamfunction form of the Navier-Stokes equations and the energy equation has been solved by the ‘Alternative Direction Implicit’ method. It has been shown that the inertia forces in the melt strongly influence the flow pattern in the melt. The convection in the melt modifies the isotherms in the melt at high surface tension Reynolds number and high Prandtl number. The buoyancy driven flow has been shown to be negligible compared to the surface tension gradient driven flow in laser melting.
Resumo:
Database schemes can be viewed as hypergraphs with individual relation schemes corresponding to the edges of a hypergraph. Under this setting, a new class of "acyclic" database schemes was recently introduced and was shown to have a claim to a number of desirable properties. However, unlike the case of ordinary undirected graphs, there are several unequivalent notions of acyclicity of hypergraphs. Of special interest among these are agr-, beta-, and gamma-, degrees of acyclicity, each characterizing an equivalence class of desirable properties for database schemes, represented as hypergraphs. In this paper, two complementary approaches to designing beta-acyclic database schemes have been presented. For the first part, a new notion called "independent cycle" is introduced. Based on this, a criterion for beta-acyclicity is developed and is shown equivalent to the existing definitions of beta-acyclicity. From this and the concept of the dual of a hypergraph, an efficient algorithm for testing beta-acyclicity is developed. As for the second part, a procedure is evolved for top-down generation of beta-acyclic schemes and its correctness is established. Finally, extensions and applications of ideas are described.
Resumo:
An analytical-numerical procedure for obtaining stress intensity factor solutions for an arbitrarily oriented crack in a long, thin circular cylindrical shell is presented. The method of analysis involves obtaining a series solution to the governing shell equation in terms of Mathieu and modified Mathieu functions by the method of separation of variables and satisfying the crack surface boundary conditions numerically using collocation. The solution is then transformed from elliptic coordinates to polar coordinates with crack tip as the origin through a Taylor series expansion and membrane and bending stress intensity factors are computed. Numerical results are presented and discussed for the pressure loading case.
Resumo:
The nonlinear singular integral equation of transonic flow is examined, noting that standard numerical techniques are not applicable in solving it. The difficulties in approximating the integral term in this expression were solved by special methods mitigating the inaccuracies caused by standard approximations. It was shown how the infinite domain of integration can be reduced to a finite one; numerical results were plotted demonstrating that the methods proposed here improve accuracy and computational economy.