141 resultados para Non Linear Systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the analysis of the absolute stability of a non-linear autonomous system which consists of a single non-linearity belonging to a particular class, in an otherwise linear feedback loop. It is motivated from the earlier Popovlike frequency-domain criteria using the ' multiplier ' eoncept and involves the construction of ' stability multipliers' with prescribed phase characteristics. A few computer-based methods by which this problem can be solved are indicated and it is shown that this constitutes a stop-by-step procedure for testing the stability properties of a given system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of a third order non-linear system subjected to a pulse excitation is analysed. A transformation of the displacement variable is effected. The transformation function chosen is the solution of the linear problem subjected to the same pulse. With this transformation the equation of motion is brought into a form in which the method of variation of parameters is applicable for the solution of the problem. The method is applied to a single axis gyrostabilized platform subjected to an exponentially decaying pulse. The analytical results are compared with digital and analog computer solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a new approach to the study of non-linear, non-autonomous systems is presented. The method outlined is based on the idea of solving the governing differential equations of order n by a process of successive reduction of their order. This is achieved by the use of “differential transformation functions”. The value of the technique presented in the study of problems arising in the field of non-linear mechanics and the like, is illustrated by means of suitable examples drawn from different fields such as vibrations, rigid body dynamics, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transient response of non-linear spring mass systems with Coulomb damping, when subjected to a step function is investigated. For a restricted class of non-linear spring characteristics, exact expressions are developed for (i) the first peak of the response curves, and (ii) the time taken to reach it. A simple, yet accurate linearization procedure is developed for obtaining the approximate time required to reach the first peak, when the spring characteristic is a general function of the displacement. The results are presented graphically in non-dimensional form.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An exact solution for the free vibration problem of non-linear cubic spring mass system with Coulomb damping is obtained during each half cycle, in terms of elliptic functions. An expression for the half cycle duration as a function of the mean amplitude during the half cycle is derived in terms of complete elliptic integrals of the first kind. An approximate solution based on a direct linearization method is developed alongside this method, and excellent agreement is obtained between the results gained by this method and the exact results. © 1970 Academic Press Inc. (London) Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the approximate solutions of non-linear autonomous systems by the application of ultraspherical polynomials. From the differential equations for amplitude and phase, set up by the method of variation of parameters, the approximate solutions are obtained by a generalized averaging technique based on the ultraspherical polynomial expansions. The method is illustrated with examples and the results are compared with the digital and analog computer solutions. There is a close agreement between the analytical and exact results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equivalence of certain classes of second-order non-linear distributed parameter systems and corresponding linear third-order systems is established through a differential transformation technique. As linear systems are amenable to analysis through existing techniques, this study is expected to offer a method of tackling certain classes of non-linear problems which may otherwise prove to be formidable in nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the approximate analysis of the step response of non-linear nonconservative systems by the application of ultraspherical polynomials. From the differential equations for amplitude and phase, set up by the method of variation of parameters, the approximate solutions are obtained by a generalized averaging technique based on ultraspherical polynomial expansions. The Krylov-Bogoliubov results are given by a particular set of these polynomials. The method has been applied to study the step response of a cubic spring mass system in presence of viscous, material, quadratic, and mixed types of damping. The approximate results are compared with the digital and analogue computer solutions and a close agreement has been found between the analytical and the exact results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the dynamic analysis of flexible,non-linear multi-body beam systems. The focus is on problems where the strains within each elastic body (beam) remain small. Based on geometrically non-linear elasticity theory, the non-linear 3-D beam problem splits into either a linear or non-linear 2-D analysis of the beam cross-section and a non-linear 1-D analysis along the beam reference line. The splitting of the three-dimensional beam problem into two- and one-dimensional parts, called dimensional reduction,results in a tremendous savings of computational effort relative to the cost of three-dimensional finite element analysis,the only alternative for realistic beams. The analysis of beam-like structures made of laminated composite materials requires a much more complicated methodology. Hence, the analysis procedure based on Variational Asymptotic Method (VAM), a tool to carry out the dimensional reduction, is used here.The analysis methodology can be viewed as a 3-step procedure. First, the sectional properties of beams made of composite materials are determined either based on an asymptotic procedure that involves a 2-D finite element nonlinear analysis of the beam cross-section to capture trapeze effect or using strip-like beam analysis, starting from Classical Laminated Shell Theory (CLST). Second, the dynamic response of non-linear, flexible multi-body beam systems is simulated within the framework of energy-preserving and energy-decaying time integration schemes that provide unconditional stability for non-linear beam systems. Finally,local 3-D responses in the beams are recovered, based on the 1-D responses predicted in the second step. Numerical examples are presented and results from this analysis are compared with those available in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of time variant reliability analysis of randomly parametered and randomly driven nonlinear vibrating systems is considered. The study combines two Monte Carlo variance reduction strategies into a single framework to tackle the problem. The first of these strategies is based on the application of the Girsanov transformation to account for the randomness in dynamic excitations, and the second approach is fashioned after the subset simulation method to deal with randomness in system parameters. Illustrative examples include study of single/multi degree of freedom linear/non-linear inelastic randomly parametered building frame models driven by stationary/non-stationary, white/filtered white noise support acceleration. The estimated reliability measures are demonstrated to compare well with results from direct Monte Carlo simulations. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

State and parameter estimations of non-linear dynamical systems, based on incomplete and noisy measurements, are considered using Monte Carlo simulations. Given the measurements. the proposed method obtains the marginalized posterior distribution of an appropriately chosen (ideally small) subset of the state vector using a particle filter. Samples (particles) of the marginalized states are then used to construct a family of conditionally linearized system of equations and thus obtain the posterior distribution of the states using a bank of Kalman filters. Discrete process equations for the marginalized states are derived through truncated Ito-Taylor expansions. Increased analyticity and reduced dispersion of weights computed over a smaller sample space of marginalized states are the key features of the filter that help achieve smaller sample variance of the estimates. Numerical illustrations are provided for state/parameter estimations of a Duffing oscillator and a 3-DOF non-linear oscillator. Performance of the filter in parameter estimation is also assessed using measurements obtained through experiments on simple models in the laboratory. Despite an added computational cost, the results verify that the proposed filter generally produces estimates with lower sample variance over the standard sequential importance sampling (SIS) filter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Euler–Bernoulli beams are distributed parameter systems that are governed by a non-linear partial differential equation (PDE) of motion. This paper presents a vibration control approach for such beams that directly utilizes the non-linear PDE of motion, and hence, it is free from approximation errors (such as model reduction, linearization etc.). Two state feedback controllers are presented based on a newly developed optimal dynamic inversion technique which leads to closed-form solutions for the control variable. In one formulation a continuous controller structure is assumed in the spatial domain, whereas in the other approach it is assumed that the control force is applied through a finite number of discrete actuators located at predefined discrete locations in the spatial domain. An implicit finite difference technique with unconditional stability has been used to solve the PDE with control actions. Numerical simulation studies show that the beam vibration can effectively be decreased using either of the two formulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new form of a multi-step transversal linearization (MTL) method is developed and numerically explored in this study for a numeric-analytical integration of non-linear dynamical systems under deterministic excitations. As with other transversal linearization methods, the present version also requires that the linearized solution manifold transversally intersects the non-linear solution manifold at a chosen set of points or cross-section in the state space. However, a major point of departure of the present method is that it has the flexibility of treating non-linear damping and stiffness terms of the original system as damping and stiffness terms in the transversally linearized system, even though these linearized terms become explicit functions of time. From this perspective, the present development is closely related to the popular practice of tangent-space linearization adopted in finite element (FE) based solutions of non-linear problems in structural dynamics. The only difference is that the MTL method would require construction of transversal system matrices in lieu of the tangent system matrices needed within an FE framework. The resulting time-varying linearized system matrix is then treated as a Lie element using Magnus’ characterization [W. Magnus, On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math., VII (1954) 649–673] and the associated fundamental solution matrix (FSM) is obtained through repeated Lie-bracket operations (or nested commutators). An advantage of this approach is that the underlying exponential transformation could preserve certain intrinsic structural properties of the solution of the non-linear problem. Yet another advantage of the transversal linearization lies in the non-unique representation of the linearized vector field – an aspect that has been specifically exploited in this study to enhance the spectral stability of the proposed family of methods and thus contain the temporal propagation of local errors. A simple analysis of the formal orders of accuracy is provided within a finite dimensional framework. Only a limited numerical exploration of the method is presently provided for a couple of popularly known non-linear oscillators, viz. a hardening Duffing oscillator, which has a non-linear stiffness term, and the van der Pol oscillator, which is self-excited and has a non-linear damping term.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper deals with a linearization technique in non-linear oscillations for systems which are governed by second-order non-linear ordinary differential equations. The method is based on approximation of the non-linear function by a linear function such that the error is least in the weighted mean square sense. The method has been applied to cubic, sine, hyperbolic sine, and odd polynomial types of non-linearities and the results obtained are more accurate than those given by existing linearization methods.